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a b s t r a c t

We consider the optimal control design of an abstract autonomous vehicle (AAV). The AAV searches an

area for tasks that are detected with a probability that depends on vehicle speed, and each detected task

can be processed or ignored. Both searching and processing are costly, but processing also returns

rewards that quantify designer preferences. We generalize results from the analysis of animal foraging

behavior to model the AAV. Then, using a performance metric common in behavioral ecology, we

explicitly find the optimal speed and task processing choice policy for a version of the AAV problem.

Finally, in simulation, we show how parameter estimation can be used to determine the optimal

controller online when density of task types is unknown.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Consider a vehicle that searches through a territory for tasks,
and let probability of task detection depend on vehicle speed
(e.g., sensor bandwidth or hysteresis requirements may prevent
detections at high search speeds). On detecting a task, the vehicle
may choose to process it. Both searching and processing are costly
(e.g., monetary cost of depleted vehicle fuel), and search costs
depend on search speed. However, the designer rewards the
vehicle for processing. Hence, good vehicle control policies will set
search speed and determine tasks to process in a way that
balances rewards and costs.

Our vehicle description fits a variety of robotics, queueing, and
other engineering applications well (e.g., Quijano et al., 2006;
Passino, 2002, 2005), and so we refer to it as an abstract

autonomous vehicle (AAV). The AAV is a generalization of the
solitary forager from optimal foraging theory (Stephens and Krebs,
1986). Optimal foraging theorists assume that natural selection
results in behaviors that optimize Darwinian fitness, and so
they use analysis of proximate fitness functions to explain
observed behaviors in nature. Lately, methods from optimal
foraging theory have been used to analyze human behavior in
nature (e.g., Rowcliffe et al., 2004) and on the Internet (Pirolli and
Card, 1999; Pirolli, 2005, 2007). Following the example of
ll rights reserved.

+1614 292 7596.

tive Center of Control Science
Andrews et al. (2004, 2007), we apply similar methods to AAV
policy design.

Early foraging theory by Schoener (1971) postulates that
optimal behaviors are found on a continuum with foraging time
minimization and net energetic intake maximization at opposite
ends. These strategies allow time for other activities (e.g., predator
avoidance and reproduction) while preventing starvation. Later,
Pyke et al. (1977) argue that lifetime energetic rate maximization
is consistent with this idea, and Charnov and Orians (1973)
develop several rate maximization models that continue to be
used today (Charnov, 1976a, b; Stephens and Krebs, 1986). As
discussed by Houston and McNamara (1999), rate maximization is
equivalent to minimizing the opportunity cost of each foraging
decision. In our context, foraging is equivalent to task processing,
and so net energetic intake is equivalent to net reward gained.
Hence, we develop AAV policies that maximize long-term net rate

of reward.
The present work combines and extends work by Andrews

et al. (2004), which extends foraging theory to engineering,
and Gendron and Staddon (1983), which modifies standard
foraging models to include speed effects. Our AAV model
subsumes those models while also including more general
search and processing costs. Under mild assumptions on
detection probabilities, we give an analytical solution for the
optimal AAV behavior in an environment with an arbitrary
number of task types. Additionally, we use computer simulation
to show how online parameter estimation leads to convergence to
the optimal AAV policy. While this more general AAV model can
be useful in ecological analysis, we focus on its application to
engineering design.

www.sciencedirect.com/science/journal/eaai
www.elsevier.com/locate/engappai
dx.doi.org/10.1016/j.engappai.2008.10.017
mailto:pavlic.3@osu.edu
mailto:passino@ece.osu.edu
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The remainder of this paper is organized as follows. In
Sections 2 and 3, the foraging-based AAV model is presented.
Analytical optimization results are given in Section 4, and these
results are validated using results from a fixed-wing airborne
vehicle simulation in Section 5. Finally, in Section 6, we make
some concluding remarks and suggestions for future work.
2. Simple AAV model

First, we present an AAV model that does not explicitly depend
on search speed. This model is based upon the prey model

described by Stephens and Krebs (1986). The solitary AAV moves
through an environment searching for tasks drawn from a known
set of task types. Tasks from each type are found according to a
Poisson process (i.e., the AAV faces a merged Poisson process).
When a task is encountered, the AAV decides whether to process
or ignore it. Processing each task takes time but rewards the AAV
on completion. Search costs, processing costs, and processing
rewards are all given in a common currency that we call points.
Task types are characterized by average task processing gain and
cost. The parameters we use to describe the task types are
denoted by the following:
�
 n 2 N: number of task types,

�
 i 2 f1;2; . . . ;ng: index used for referring to a specific task type,

�
 gp

i 2 R: average point gain from processing a task of type i,
�
 cp
i 2 R: average cost rate of processing a task of type i given in

points per unit of processing time,

�
 tp

i 2 fx 2 R : x40g: average time required to process a task of
type i, and

�
 li 2 fx 2 R : x40g: Poisson encounter rate of task type i given

in encounters per unit time.

Likewise, AAV parameters are denoted by:
�
 cs 2 R: cost rate of searching given in points per unit time,

�
 qi 2 ½0;1�: probability that AAV will process an encountered

task of type i, and

�
 ~q 2 ½0;1�n: the vector ½q1; q2; . . . ;qn�

T.

The elements of ~q are set by the AAV control policy.

2.1. Average net rate of point gain

Using methods like those used by Charnov and Orians (1973)
and Stephens and Krebs (1986), the long-term average rate of
point gain for the AAV using task-type preference policy ~q can be
shown to be J : ½0;1�n/R where

Jð~qÞ9

Pn
i¼1liqiðg

p
i � cp

i tp
i Þ � cs

1þ
Pn

i¼1liqit
p
i

, (1)

which is in points per unit time.

2.2. Zero–one rule

As shown by Stephens and Krebs (1986), without loss of
generality, optimization of Jð~qÞmay be considered a combinatorial
problem where ~q 2 f0;1gn. That is, an optimal solution with
extreme preferences (i.e., qi ¼ 0 or 1 for all i 2 f1;2; . . . ;ng) always
exists. We assume this so-called ‘‘zero–one rule,’’ which implies
that there is a set of task types such that any task encounter from
one of these types should always be processed, and any task
encounter outside of this set should always be ignored. We call
this special set of task types a task pool.
2.3. Task-type ordering

Without loss of generality, task types are ordered
(i.e., indexed) by their profitability, which is defined as the ratio
of the net point gain from processing a task of that type to the
processing time of that task. In other words, task types are
ordered so that

gp
1 � cp

1tp
1

tp
1

X
gp

2 � cp
2tp

2

tp
2

X � � �X
gp

n�1 � cp
n�1tp

n�1

tp
n�1

X
gp

n � cp
ntp

n

tp
n

. (2)

The general combinatorial optimization problem involves search-
ing through the space of 2n task pools. However, Stephens and
Krebs (1986) show that if tasks are ordered in this way, the only
valid task pool candidates are the empty set and the n task pool
candidates of the form f1; . . . ; kg where k 2 f1; . . . ;ng. So, this
ordering reduces this combinatorial optimization problem to a
search over nþ 1 possible candidates.
3. Speed-dependent AAV model

We assume that the AAV speed is described with the following
parameters:
�
 umin 2 fx 2 R : xX0g: the minimum possible AAV speed given
in length units per time units,

�
 umax 2 fx 2 R : xXuming: the maximum possible AAV speed

given in length units per time units, and

�
 u 2 ½umin;umin�: constant speed of the AAV given in length units

per time units.

In the following, we enhance the simple AAV model by integrating
the speed u into existing AAV parameters.

3.1. Search and processing cost assumptions

For simplicity, we assume that the AAV has the same
processing cost cp for each task type (i.e., cp

i � cp for all
i 2 f1; . . . ;ng). So, the profitability ordering from Eq. (2) is
equivalent to the ordering

gp
1

tp
1

X
gp

2

tp
2

X � � �X
gp

n�1

tp
n�1

X
gp

n

tp
n

, (3)

which has no dependence on speed u. Note that cp may depend on
speed u; however, because every task type has the same cp, the
ordering does not.

We assume that search cost cs : ½umin;umax�/R is defined by

csðuÞ9cs
‘uþ cs

a (4)

with the definitions:
�
 cs
‘ 2 R: linear portion of the cost rate given in points per unit

time per unit speed and

�
 cs

a 2 R: constant portion of the cost rate given in points per
unit time.

Our choice of csðuÞ ensures analytical tractability; however, it is a
reasonable model of speed-dependent fuel cost.

Similarly, the processing cost cp : ½umin;umax�/R is defined by

cpðuÞ9cp
‘uþ cp

a (5)

with the definitions:
�
 cp
‘ 2 R: linear portion of the cost rate given in points per unit

time per unit speed and
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�
 cp
a 2 R: constant portion of the cost rate given in points per

unit time.

3.2. Encounter rate and probability of detection

We assume that encounter rate li is such that

li9uDipi (6)

for all i 2 f1;2 . . . ;ng with the parameter definitions:
�
 Di 2 fx 2 R : xX0g: linear density of tasks of type i along AAV
search path given in number of tasks per unit length and

�
 pi 2 ½0;1�: probability of detecting a task of type i.

The probability of detection pi also depends on the search speed u.
Gendron and Staddon (1983) use a sophisticated relationship
modeling that is valid for some specific biological contexts
(Gendron, 1982). There is little reason to believe their choice
applies well to all AAV problems, and so because it presents
barriers to analysis for n41, we choose an affine relationship that
connects minimum speed umin and maximum speed umax by a
straight line. That is, for all i 2 f1; . . . ;ng, we define:
�
 pslow
i 2 ½0;1�: probability of detecting task of type i at minimum

speed umin and

�
 pfast

i 2 ½0;1�: probability of detecting task of type i at maximum
speed umax

and use linear interpolation to find the detection probability for
u 2 ðumin;umaxÞ.

For example, the probability of detection function piðuÞ shown
in Fig. 1 is

piðuÞ9p‘i uþ pa
i , (7)

where

p‘i9
pfast

i � pslow
i

umax � umin
, (8)

pa
i 9pslow

i � p‘i umin. (9)

We do not assume that p‘ip0. That is, the slope of each detection
function may be negative, flat, or positive. However, results
are most interesting when slopes are nonpositive. Otherwise,
optimal behaviors are strongly biased toward operation at
maximum speed.

In summary, encounter rate for task type i is li :
½umin;umax�/R defined by

liðuÞ9uDipiðuÞ ¼ uDiðp
‘
i uþ pa

i Þ ¼ Dip
‘
i u2 þ Dip

a
i u. (10)
Fig. 1. Probability of detection function piðuÞ for task type i.
3.3. Average net rate of point gain with speed

The average net rate of point gain used in this paper is obtained
by applying Eqs. (4), (5), and (10) to Eq. (1), which gives function
J : f0;1gn � ½umin;umax�/R defined by

Jð~q;uÞ9

Pn
i¼1liðuÞqiðg

p
i � cpðuÞtp

i Þ � csðuÞ

1þ
Pn

i¼1liðuÞqit
p
i

¼

Pn
i¼1uDiðp

‘
i uþ pa

i Þqiðg
p
i � ðc

p
‘uþ cp

aÞt
p
i Þ � cs

‘u� cs
a

1þ
Pn

i¼1uDiðp
‘
i uþ pa

i Þqit
p
i

¼

Pn
i¼1ðg

p
i Dip

‘
i qi � tp

i Dic
p
‘p‘i qiu� tp

i Dic
p
ap‘i qiÞu

2

þ
Pn

i¼1ðg
p
i � cp

‘ tp
i u� cp

atp
i ÞDip

a
i qiu� cs

‘u� cs
a

2
4

3
5

1þ
Pn

i¼1qit
p
i Dip

‘
i u2 þ

Pn
i¼1qit

p
i Dip

a
i u

¼
G3ð~qÞu

3 þ G2ð~qÞu
2 þ G1ð~qÞuþ G0ð~qÞ

T2ð~qÞu2 þ T1ð~qÞuþ 1
, (11)

where

G3ð~qÞ9�
Xn

i¼1

tp
i cp
‘Dip

‘
i qi, (12)

G2ð~qÞ9
Xn

i¼1

Diqiðg
p
i p‘i � cp

‘ tp
i pa

i � cp
atp

i p‘i Þ, (13)

G1ð~qÞ9
Xn

i¼1

Dip
a
i qiðg

p
i � cp

atp
i Þ � cs

‘ , (14)

G0ð~qÞ9� cs
a, (15)

T2ð~qÞ9
Xn

i¼1

qit
p
i Dip

‘
i (16)

and

T1ð~qÞ9
Xn

i¼1

qit
p
i Dip

a
i . (17)

Because the functions in Eqs. (12)–(17) are independent of speed
u, Eq. (11) is a simple ratio of two polynomials in u where the
numerator and denominator polynomials both have a degree that
is independent of n.
4. Optimization of net rate over speed and task choice

Stephens and Krebs (1986) show that the optimal task pool is
determined by the encounter rates of different task types in that
pool. Because encounter rate varies with speed, the optimal task
pool will vary with speed. However, because Eqs. (12)–(17) are
functions of the task pool, the optimal AAV speed varies with
task pool. So, solving for optimal speed and optimal task pool
cannot be done separately; these two problems must be solved
simultaneously.

4.1. Algorithm outline

The task-type ordering in Eq. (3) does not depend
on speed, and so the set of the nþ 1 task pool candidates does
not vary with speed. The set will always be the empty set and the
n task pools of the form f1;2; . . . ; kg for all k 2 f1; . . . ;ng. So, we
develop an optimization algorithm that finds the optimal
speed for a given task pool. By iterating this algorithm over all
nþ 1 pools, the optimal speed and task pool combination can
be found.
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4.2. Solving for the optimal speed using Lagrange multiplier methods

Let ~q represent any given task choice (i.e., a given task pool).
Because ~q is fixed, then Jð~q;uÞ in Eq. (11) is a ½umin;umax�/R

function of u which is continuous and twice differentiable. For
simplicity, we abbreviate Jð~q;uÞ by JðuÞ or simply J. Similarly,
the ~q argument will be dropped from the six parameters in
Eqs. (12)–(17). Here, we find the optimal speed u ¼ u� for the
function J.

The equivalent constrained optimization problem

minimize � JðuÞ

subject to u� umaxp0; umin � up0 (18)

can be solved using Lagrange multiplier methods (Bertsekas,
1995).

Because at most one of the two inequality constraints may be
active at a time, all points u 2 R are regular (i.e., the active
constraint gradients will always be linearly independent). So, the
Kuhn–Tucker necessary conditions for a local minimum may be
applied in all cases. Because �J is a continuous function defined
over a compact set, the Lagrange multiplier method is guaranteed
to find every local minimum of Eq. (18), and so all points
satisfying these conditions should be considered optimal speed
candidates for the given task pool.

Let m1;m2 2 fx 2 R : xX0g be the Lagrange multipliers corre-
sponding to the two inequality constraints in Eq. (18). The
resulting Lagrangian function for this problem, its gradient, and
its Hessian are

LðuÞ ¼ � JðuÞ þ m1ðu� umaxÞ þ m2ðumin � uÞ

¼
�ðG3u3 þ G2u2 þ G1uþ G0Þ

T2u2 þ T1uþ 1
þ m1ðu� umaxÞ þ m2ðumin � uÞ,

(19)

ruLðuÞ ¼ �ruJðuÞ þ m1 � m2

¼

�
G3T2u4 þ 2G3T1u3 þ ðG2T1 þ 3G3 � G1T2Þu

2

þ2ðG2 � G0T2Þuþ G1 � G0T1

 !

ðT2u2 þ T1uþ 1Þ2
þ m1 � m2

(20)

and

r
2
uuLðuÞ ¼ �r2

uuJðuÞ

¼

ð�Þ2ðT2u2 þ T1uþ 1Þð2T2uþ T1Þ

�ðT2u2 þ T1uþ 1Þ2

4G3T2u3 þ 6G3T1u2

þ2ðG2T1 þ 3G3 � G1T2Þu

þ2ðG2 � G0T2Þ

2
664

3
775

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ðT2u2 þ T1uþ 1Þ4
,

(21)

respectively. The ‘‘ð�Þ’’ in Eq. (21) is the bracketed numerator in Eq.
(20). Only the sign of the complicated Eq. (21) is significant.
Additionally, because it will only be used in the unconstrained
case at points where Eq. (20) is zero, many of its terms will
disappear. In fact, only the sign of the square-bracketed expres-
sion in the numerator has any impact on the analysis.

The goal is to find a set of speed candidates that includes the
optimal speed u� for the given task pool. There are three cases to
consider.

4.2.1. Unconstrained case

In this case,

m1 ¼ m2 ¼ 0 and uminououmax. (22)
Any optimal point must make the bracketed expression in the
numerator of the fraction in Eq. (20) equal to zero. So, any real
roots of this fourth-order polynomial that satisfy the conditions in
Eq. (22) are candidates.2

Because all variations are feasible in the unconstrained case,
second-order conditions can be used to reduce the number of
candidates in this set. That is, a point in this set cannot be
considered to be a candidate unless the square-bracketed
expression in the numerator of the fraction in Eq. (21) is negative
or zero at that point.

In summary, all real roots of the bracketed expression in
Eq. (20) that satisfy Eq. (22) and additionally make the square-
bracketed expression in Eq. (21) nonpositive should be included in
the set of u� candidates.

4.2.2. Lower-constrained case

In this case,

m1 ¼ 0 and u ¼ umin. (23)

Because the set of feasible variations at this constraint
boundary is simply f0g, the second-order necessary conditions
will always hold.

Because m2X0, if the bracketed expression in Eq. (20) is
negative or zero at u ¼ umin, then umin is a u� candidate.

4.2.3. Upper-constrained case

In this case,

m2 ¼ 0 and u ¼ umax. (24)

Because the set of feasible variations at this constraint
boundary is simply f0g, the second-order necessary conditions
will always hold.

Because m1X0, if the bracketed expression in Eq. (20) is
positive or zero at u ¼ umax, then umax is a u� candidate.

This method finds a small set of u� candidates for a given task
pool. The element of this set that maximizes JðuÞ over the set will
be u ¼ u� for this ~q. Finding the u� for each of the nþ 1 possible
optimal task pools and then maximizing Jð~q;uÞ over those
pool–speed combinations gives the optimal task-type choice and
corresponding optimal speed.
5. Simulation

In a real scenario, an AAV may have limited information about
its environment. Above, it is assumed that the task-type densities
(i.e., the encounter rates) are unknown a priori. Here, the AAV
estimates these densities online. Based on the estimates, the
explicit solution for the optimal speed and task pool from Section
4 is used by the AAV. We show that this approach quickly
converges upon the optimal task-type and speed choice for the
environment, which validates the theory and demonstrates its
utility in a realistic application.

5.1. Simulation setup

The algorithm presented here can be applied to an autonomous
air vehicle (AAV) that searches through an environment for
spatially distributed tasks. The search area is represented as a
two-dimensional coordinate plane with orthogonal dimensions x1

and x2. The rectangular search area of interest and the AAV model
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Table 1
Search area and vehicle parameters.

Parameter Notation Value

Search area parameters

Search area width (along x1 direction) W 2000 m

Search area depth (along x2 direction) D 2000 m

Vehicle parameters

Sensor width w 100 m

Sensor lead distance d 122 m

Altitude a 122 m

Maximum angular speed omax 1

6
radians=s

Minimum speed umin 11 m=s

Maximum speed umax 23 m=s

Linear cost rate coefficient c‘ 11

920
points=s per m=s

Constant cost rate coefficient ca 1

40
points=s

Smoothing filter time constant t 5 s

Table 2
Task-type parameter notation.

Parameter Notation

Task-type index i

Average number of tasks of type i in search area Ni

Average linear density of tasks of type i in search area Di

Processing gain of tasks of type i gp
i

Processing time of tasks of type i tp
i

Probability of detection at umin for task type i pslow
i

Probability of detection at umax for task type i pfast
i

Table 3
Task-type parameter values.

Task type (i) Ni Di gp
i tp

i pslow
i pfast

i

1 150 tasks N1w=ðWDÞ 20 points 2p=omax 0.8 0.5

2 45 tasks N2w=ðWDÞ 110 points 2p=omax 1.0 0.0

3 200 tasks N3w=ðWDÞ 100 points 2p=omax 0.9 0.2

4 95 tasks N4w=ðWDÞ 105 points 2p=omax 0.82 0.82
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are specified by parameters in Table 1. The vehicle travels at a
constant altitude a with a sensor that is triggered when an object
crosses a line w wide that is distance d ahead of the vehicle. The
vehicle initially starts heading in the increasing x2 direction with
the center of its sensor line positioned at ðx1; x2Þ ¼ ðw=2;0Þ. Its
search pattern moves it along the x2 direction for a distance D.
When the sensor reaches x2 ¼ D, the vehicle stops searching and
turns itself around so that it heads in the decreasing x2 direction
with the center of its sensor a distance w along the x1 direction
from where it stopped searching. It continually repeats the
process of traveling straight for a distance D and turning around
until its sensor has searched over the entire area. We call this
trajectory a lawnmower pattern. It is assumed that the fuel cost
for the vehicle is the same when searching as it is processing, and
so cp ¼ cs ¼ c, which is specified by linear and constant coeffi-
cients c‘ and ca, respectively. The vehicle is continuously
penalized with this fuel cost. The fuel cost coefficients picked
here are chosen so that during each straight pass of the search
pattern the vehicle suffers a penalty approximately equal to the
value of processing a small number of tasks.

The vehicle has a maximum speed of umax and a minimum
speed of umin. The vehicle’s speed, orientation angle, and angular
speed are denoted by u, y, and o, respectively. The maximum
angular speed omax effectively gives the vehicle a limited turning
radius that varies with speed u. The vehicle’s kinematics are
given by

_x1 ¼ u cos y
_x2 ¼ u sin y
_y ¼ o

8><
>: with jojpomax. (25)

This model was introduced by Dubins (1957) and is often called a
Dubin’s vehicle. The original model uses a constant velocity u and
considers o to be a single input to the system. Under these
assumptions, Dubins (1957) provides a method for generating an
o control to drive the vehicle along a shortest-path trajectory
from any one point to any other point. That method states that for
any time the desired angular speed o 2 f�omax;0;omaxg. That is,
when the vehicle is moving along a shortest-path trajectory, it will
only move in straight lines and hard turns.

Because some parameters must be estimated online, the
vehicle used here must have a time-varying speed u. It is assumed
that the vehicle’s speed can track such a reference u as long as it is
continuous; however, as parameters are estimated, the history of
the speeds predicted by the algorithm may not be continuous.
Thus, the algorithm’s speed history is denoted by ud which is
filtered by a continuous-time first-order linear time-invariant
filter with time constant t given by the kinematics

_u ¼ t�1ðud � uÞ. (26)

Hence, u will be a continuous approximation of ud, and so the
vehicle will have the ability to track this sufficiently smooth
reference.

In order to simplify the generation of shortest-path trajec-
tories, it is also assumed that the speed u is momentarily held
constant whenever the vehicle is not traveling on its straight
search path within the search area. So, the vehicle can use the
shortest-path methods described by Dubins (1957) to pick its
trajectory when moving from the end of one straight pass to the
start of the next straight pass. The speed is held constant by
setting ud ¼ u at the end of a straight search pass and then
resetting ud back to the speed choice picked by the algorithm once
the vehicle is at the start of the next straight search pass.

There will be four task types in this environment (i.e., n ¼ 4).
Whenever a task is detected, the vehicle will choose to either
process or ignore the task. Processing of a task involves
completing a circle at its current location in order to pass its
sensor over the task an additional time (e.g., for task classifica-
tion). The vehicle’s speed is held constant during this processing
loop and the maximum angular speed omax is used. Processing is
complete when the vehicle returns to the position it was in when
it detected the task. At that point, the vehicle continues on its
original search path. Notation for the important parameters for
these types is given in Table 2 and the actual parameter values for
each type are given in Table 3. If the vehicle has just processed a
task of type i, it is rewarded with gp

i . Because the vehicle’s
maximum angular speed omax is fixed, it completes a processing
circle in the same amount of time regardless of its speed u. Thus,
each task type has the same processing time (i.e., tp

i ¼ 2p=omax for
all i 2 f1; . . . ;ng). Under this condition, ordering by profitability is
equivalent to ordering by processing gain gp

i .
For each task type i, the actual number of tasks generated for

that type is drawn according to a Poisson random variable with
rate parameter Ni. Those tasks are then distributed spatially
throughout the environment according to uniform distributions
for both the x1 and the x2 directions. Thus, over multiple
simulation runs, the vehicle will on average find Ni objects in
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the search area for each task type i 2 f1; . . . ;ng and task
encounters will follow a Poisson process.

5.2. Heuristic implementation

It is assumed that the vehicle has knowledge of every
parameter except for the linear density Di of each task type i in
the search area. The vehicle initially assumes that Di ¼ 0 for all
i 2 f1; . . . ;ng. However, as the vehicle travels it continually updates
this estimate by dividing the number of each task type it has
encountered up to that time by the linear distance traveled within
the search area on straight passes. While estimation could be
done continually; we only ensure that an update occurs at every
task detection and no more than t time units since the previous
update. At each update, a new task-type choice ~q and desired
speed ud is chosen according to the approach in Section 4. If the
update occurs due to a task encounter, then the task-type choice~q
is updated before the choice to process the detected task is made.

5.3. Simulation results

5.3.1. Theoretical predictions

When the algorithm is used with these parameters, it predicts
an optimal speed of u ¼ 12:6239 m=s with a task pool consisting
of the three highest-profitability task types (i.e., ~q ¼ ½0;1;1;1�T).
So, the average net rate of point gain is 1:9177 points=s.

5.3.2. Model verification

Fig. 2 shows the result of averaging 50 runs of the simulation at
each of 35 speeds uniformly distributed between umin and umax.
The number of simulation runs used here and again later was
chosen to ensure convergence of the first- and second-order
statistics. The vehicle used in these simulations always processes
tasks of the three task types of highest profitability (i.e., types
2–4) and ignores tasks of the lowest profitability task type (i.e.,
type 1). Each circular marker shows the net rate of point gain
averaged over the 50 runs at each of the 35 speeds. Each of the
square markers show the average net rate of point gain after fuel
cost and additional time due to moving from the end of one search
pass to the start of the next search pass are removed. That is, the
curve made up of square markers is an idealized version of the
curve made of circular markers. Both of these average curves are
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Fig. 2. Average net rate of point gain over speed.
shown with standard error bars. The final curve made up of
triangular markers shows the expected curve from the theory. The
dashed vertical line labeled with a ‘‘u�’’ shows the optimal speed
predicted from the theory.

Clearly the theoretical average net rate of point gain curve
matches the simulated average net rate of point gain curve
provided that time and fuel losses from between-pass travel are
removed. While the value of the actual average net rate of point
gain is different from the idealized version, the shapes are very
similar and thus the optimal speed for this particular task pool
(i.e., ~q) will still be a good choice. These observations hold in this
simulation for every task pool.

In the case when the difference between the idealized and
actual average curves is large, the wrong task pool may be chosen.
This case will only occur when the point gains resulting from the
optimal speed choice for each task pool are very close together
with respect to the difference between the idealized and actual
average curves. Thus, in cases when the difference between the
curves is small, picking the wrong task pool will not have much of
a detrimental effect. To ensure that this difference is small, the
amount of extra time spent between search passes should be
made very small with respect to the total time spent searching
and processing. In this particular simulation, it is sufficient to
increase the depth D of the search area. To compensate for the
extra area the vehicle will need to cover before completing its
mission, the width W of the search area can be decreased.
5.3.3. Simulation of limited-information case

Figs. 3 and 4 show the aggregate result of 50 simulation runs
using the heuristic algorithm that estimates densities online and
makes speed and task pool choices based on those estimates.
Fig. 3 is shown with standard error bars. The stem plots in Fig. 4
represent the proportion of the total simulation runs where the
vehicle chose to include each task type at any given time. Both of
these have been decimated and truncated for clarity. Again, 50
simulation runs were used to ensure convergence of the first- and
second-order statistics.

The statistics on the speed picked by the algorithm quickly
converge to 12:6630 m=s with a standard deviation of 0:2666 m=s,
which is very close to the theoretical optimal speed choice.
Similarly, the inclusion proportion trajectories show that after a
short time every simulation picks the expected optimal task pool
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Fig. 3. Average speed trajectory.
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for inclusion. The average net rate of point gain over these 50
simulation runs is 1:7677 points=s with a standard deviation of
0:0274 points=s; however, when adjusting for the extra time and
fuel spent between search passes, the resulting average is
1:9157 points=s with a standard deviation of 0:0240 points=s.
This result is also close to the value expected by the theory.
In other words, the simulations converge so quickly that
the heuristic implementation performs almost as well as an
omniscient case.
6. Conclusions

Methods inspired by foraging theory can be used in the
design of decision-making strategies for autonomous vehicles.
We have shown that the classic prey model can be enhanced
for engineering applications to include the impact of
speed-dependent sensor limitations as well as speed-dependent
fuel cost. The enriched prey model can be used to predict
the optimal task-type choice policy and speed. When
there is limited information (e.g., when the density of tasks is
unknown) the information can be estimated online to perform
online optimization of task-type choice and speed. We
showed that this heuristic method can be applied directly to
an autonomous air vehicle responsible for surveillance of a
given area.

There are a number of promising directions for additional
work. This work uses simple affine models of the speed
dependence in detection probability and fuel cost. There is
significant opportunity for future work to use more general
models. Not only could more complex models be used, but models
that change over time (e.g., as the AAV adjusts how it processes
information from its sensors) could also be used. Additionally, the
speed–accuracy and speed–cost trade-offs could also be examined
in the classical patch model in foraging theory, which predicts
when a forager should leave a patch of diminishing returns to
search for a new patch. Of course, other numeric algorithms
(e.g., genetic algorithms) can already be used to find the optimal
AAV policy for these more complicated cases. However, simple
algorithms informed by an analytical approach should be
more efficient especially when being implemented online.
Additionally, analytical solutions give insight into how the
optimal solution will change as environmental parameters (e.g.,
task-type densities) change.

The impact of speed dependence on other foraging models
(e.g., risk-sensitivity, recognition cost) could also be investigated
in a similar fashion. Finally, to verify the validity of biologically
inspired design methods (e.g., rate as opposed to efficiency
maximization), there is a need for more examples of ideas from
foraging theory being applied to actual engineering problems. In
particular, the implementation of these algorithms in a mobile
robot testbed would be useful to further evaluate the practical
value of the ideas presented here (e.g., as Quijano et al., 2006
showed the practical value of the standard prey model for an
important engineering application).
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