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ABSTRACT

Optimal foraging theory explains adaptation via natural selection through quan-

titative models. Behaviors that are most likely to be favored by natural selection can

be predicted by maximizing functions representing Darwinian fitness. Optimization

has natural applications in engineering, and so this approach can also be used to de-

sign behaviors of engineered agents. In this thesis, we generalize ideas from optimal

foraging theory to allow for its easy application to engineering design. By extending

standard models and suggesting new value functions of interest, we enhance the ana-

lytical efficacy of optimal foraging theory and suggest possible optimality reasons for

previously unexplained behaviors observed in nature. Finally, we develop a procedure

for maximizing a class of optimization functions relevant to our general model. As

designing strategies to maximize returns in a stochastic environment is effectively an

optimal portfolio problem, our methods are influenced by results from modern and

post-modern portfolio theory. We suggest that optimal foraging theory could benefit

by injecting updated concepts from these economic areas.
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CHAPTER 1

INTRODUCTION

Following the example of Andrews et al. [1], Andrews et al. [2], Pavlic and Passino

[46], and Quijano et al. [50], we synthesize ideas from Stephens and Krebs [60] to apply

optimal foraging theory (OFT) to engineering applications. In particular, we expand

the solitary agent framework from classical OFT so that it applies to more general

cases. This framework describes a solitary agent (e.g., an autonomous vehicle) that

faces tasks to process at random. On encounters with a task, the designed agent

behavior specifies whether or not the agent should process the task and for how

long processing should continue. This is inherently an optimal portfolio [36] problem

as it involves allocating resources (e.g., time and cost of processing) in a way that

optimizes some aspect of random future returns (e.g., value of tasks relative to fuel

cost). Therefore, we then derive optimization results in this framework using methods

borrowed from optimal portfolio theory. We hope that these extensions of OFT will

be useful in the design of high-level control of autonomous agents and will also provide

new insights in biological applications.

In Chapter 2, we use insights from behavioral ecology to develop a general stochas-

tic model of a solitary agent with statistics that may be used in analyzing or designing

optimal behavior. In particular, we generalize the stochastic model used by classical
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OFT and propose a new analysis approach. The statistics used in classical OFT are

conditioned on the number of tasks encountered regardless of whether or not those

tasks are processed. In our approach, we focus on statistics conditioned on the num-

ber of tasks processed. Not only does this have greater applicability to engineering,

but it provides a new method for finite-lifetime analysis.

In Chapter 3, we study various ways that statistics of our generalized agent may

be combined for multiobjective optimization. We first describe the approaches used in

classical OFT. By generalizing these classical objectives, we suggest new explanations

for peculiar foraging behaviors observed in nature. We then propose new optimization

objectives for use in engineering; however, we discuss how these objectives may also

be applicable in behavioral ecology. Finally, we discuss how existing work in classical

OFT may be duplicating existing work in economics. We suggest that a study of the

most recent optimal portfolio theory literature may provide valuable insights to both

behavioral analysis and design.

In Chapter 4, we analyze a class of optimization functions that share a particular

structure. Many of the functions we introduce in Chapter 3 for multiobjective opti-

mization have this structure, and so this analysis leads to optimal solutions for them.

We present some of those solutions at the end of the chapter.

Concluding remarks are given in Chapter 5. Appendix A provides some results

from renewal theory that are used in Chapter 2. Lists of acronyms, model terms, and

mathematical symbols that we use are given at the end of this document. Topic and

people indices follow the bibliography.
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CHAPTER 2

MODEL OF A SOLITARY AGENT

In this chapter, we present a stochastic model of a typical solitary agent (i.e., nei-

ther competition nor cooperation is modeled) as a generalization of the one described

by Charnov and Orians [16]. This model is similar to numerous deterministic and

stochastic foraging models in the ecology literature [e.g., 14, 15, 25, 47, 48, 55, 67]; we

focus on the model of Charnov and Orians because its high level of mathematical rigor

lets it encompass many features of most other models in a theoretically convincing

way. Introducing additional generality to this model allows it to be used in a wider

range of applications that have different optimization criteria than classical OFT. We

also suggest a new way of deriving statistics for this model based on a fixed number

of tasks processed. This differs from the conventional statistical approach in OFT

which focusses on statistics based on a fixed number of tasks encountered regardless

of processing. Our approach has wider application to engineering and provides a new

way of handling analysis of finite-lifetime behavior.

Below, we introduce terminology that will be used throughout this document and

give the motivations for our approach. The model is presented in Section 2.1. In

Section 2.2, we describe the analytical approach used in classical OFT. We present

our approach as a modification to the classical OFT method in Section 2.3. Interesting
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relationships between the two methods are given in Section 2.4. Finally, weaknesses

of this model (and thus also of both approaches) are given in Section 2.5. A list of

some frequently used terms in this model and the two approaches is given at the end

of this document.

Terminology: Agents, Tasks, and Currency

The model we use describes a generic agent that searches at some constant rate

for tasks to process in an effort to acquire point gain. The agent is assumed to be

able to detect all potential tasks perfectly. During both searching and processing,

the agent may have to pay costs ; however, the agent will pay no cost to detect the

tasks. The point gain and costs will be given in the same currency, and so net point

gain will be the difference between point gain and costs. For example, this model

could describe an animal foraging for energetic gain at some energetic cost, or it could

describe an autonomous military vehicle searching for targets at the expense of fuel.

Behavioral Optimization: Making the Best Choices

When an agent encounters a task, we refer to making a choice among different

behavioral options within the model for processing that task. Despite this naming

convention, we do not imply that the agent needs to have the cognitive ability to

make choices; the agent only needs to behave in some consistent manner. We then

can build performance measures over the space of these behaviors. In a biological

context, these performance measures may model reproductive success. In an engi-

neering context, these performance measures may, for example, measure the relative

importance of various tasks with respect to the fuel cost required to complete them.
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Whether through natural selection or engineering design, behaviors that optimize

these performance measures should be favored.

Approach Motivation: Finite Lifetime Analysis and Design

Our model is more than just semantically different than the classical OFT model

originally introduced by Charnov and Orians [16] and popularized by Stephens and

Krebs [60]. For one, it takes parameters from a wider range of values and replaces

deterministic aspects of the OFT model with first-order statistics of random vari-

ables. More importantly, our new approach to analysis provides a convenient method

for analyzing behavior over a finite lifetime (or runtime in an engineering context).

Classical OFT does not attempt to analyze finite lifetimes. Instead, limiting statistics

on a space of never-ending behaviors are used. It is natural to define a finite lifetime

as a finite number of tasks processed. However, classical OFT focusses its analysis on

cycles that start and end on task encounters regardless of whether those encounters

lead to processing. In our approach, we recognize that because the agent does not pay

a recognition cost on each encounter, all encounters that do not result in processing

may be discarded. Because we consider only the encounters that result in processing,

a finite lifetime can be defined as a finite number of these encounters. This can be

useful, for example, if processing a task involves depositing one of a limited number

of objects.

5



2.1 The Generalized Solitary Agent Model

An agent’s lifetime is a random experiment modeled by the probability space1

(U ,P(U),Pr). That is, each outcome ζ ∈ U represents one possible lifetime for the

agent, and so we will often substitute the term lifetime for the term outcome. Thus,

statistics on random variables2 in this probability space will include parameters that

fully specify the environment and the agent’s behavior. For example, if the agent

acquires gain over its lifetime, the expected3 gain represents the probabilistic average

of all possible gains given the agent’s behavior and the randomness in the environment.

The optimization goal will be to choose behavioral parameters that yield the optimum

statistics in the given environment.

2.1.1 Model Assumptions

An agent’s lifetime (i.e., each random outcome in the model) consists of searching

for tasks, choosing whether to process those tasks, processing those tasks, receiving

gains for processing those tasks, and paying costs for searching and processing. The

following are general assumptions about these aspects of the agent’s interaction with

its environment.

Independent Processing Cost Rates: Processing costs are linear in processing time,

and so they are completely specified by processing cost rates. We assume these

1A probability space is a set of outcomes, a set of events that each are a set of outcomes, and a
measure mapping those events to their probability.

2A random variable X is a measurable function mapping events into Borel sets of real numbers.
3The expectation E(X) is

∫∞
−∞ xfX(x) dx where fX is the (Lebesgue) probability density of

events under X. The expectation is often called the mean or the (first) moment (about the origin).
It represents the center of mass of the distribution.
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cost rates are uncorrelated4 with any length of (processing) time, and that the

processing cost of any particular task is independent5 of the processing cost of

any other task.

Independent Processing Gains: The processing gain for any particular task is inde-

pendent of the processing gain of any other task.

Independent Processing Decisions: An agent’s decision to process any particular task

is independent of its decision to process any other task.

Pseudo-Deterministic Search Cost Rate: The search cost for finding any particular

task is assumed to be independent of the type of that task and independent of

the search cost of finding any other task. Additionally, search costs are assumed

to be linear in search time, and so they are completely specified by search cost

rates. We make several assumptions about these rates.

• Search cost rates are uncorrelated with any length of time.

• For any lifetime ζ ∈ U , the search cost rate is a single random variable

rather than some kind of random process. In other words, we assume the

search cost rate is constant over the entire lifetime of an agent. Thus, we

consider the search cost rate to be the random variable Cs : U 7→ R.

• We define cs ∈ R as the expectation of random variable Cs (i.e., cs =

E(Cs)), so cs is finite.

4To say random variables X and Y are uncorrelated means E(XY ) = E(X) E(Y ).
5To say random variables X, Y , and Z are (mutually) independent means that fXY Z(x, y, z) =

fX(x)fY (y)fZ(z). This implies that they are uncorrelated and that E(X|Y ) = E(X).

7



• We assume Pr(Cs = cs) = 1. This is roughly equivalent to assuming that

Cs is deterministic. This assumption is critical for the analyses of variance

and stochastic limits in the model; if neither of these is of interest, then

this assumption can be relaxed entirely.

Thus, in many cases, the parameter cs will be an acceptable surrogate for the

phrase search cost rate or even search cost as long as it is understood to be a

rate.

2.1.2 Task-Type Parameters

Tasks encountered by an agent during its lifetime are grouped into types that

share certain characteristics. In particular, there are n ∈ N distinct task types. Take

i ∈ {1, 2, . . . , n}.

Task-Type Processes: For task type i, encounters are driven by a Poisson process

(Mi(ts) : ts ∈ R≥0). That is, for each lifetime ζ ∈ U , Mi(ts) is the num-

ber of encounters with tasks of type i after ts ∈ R≥0 units of search time.

We associate the following sequences of (mutually) independent and identically

distributed (i.i.d.) random variables with finite expectation6 with this Poisson

process.

• (I iM): Random process representing the type of the task. That is, I iM = i

for all N ∈ N and all ζ ∈ U .

• (giM): Random process representing potential gross processing gains (i.e.,

the gross gain rewarded if the task is chosen for processing) for encounters

with tasks of type i.

6To say random variable X has finite expectation means that E(|X|) <∞.
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• (τ iM): Random process representing potential processing times (i.e., the

processing time if the task is chosen for processing) for encounters with

tasks of type i.

• (ciM): Random process representing potential cost rates (i.e., the cost rate

for processing time if the task is chosen for processing) for encounters with

tasks of type i. Thus, (ciMT
i
M) is a random process of potential costs (i.e.,

the processing cost if the task is chosen for processing) for encounters with

tasks of type i.

• (X i
M): Random process representing the agent’s choice to process a task

of type i immediately after encountering it. That is, for encounter N ∈ N

of lifetime ζ ∈ U ,

X i
M =

{
0 if the agent chooses not to process the task

1 if the agent chooses to process the task

We make several assumptions about this process.

(i) For all N ∈ N, E(X i
M) = 1 if and only if X i

M(ζ) = 1 for all ζ ∈ U .

(ii) For all N ∈ N, E(X i
M) = 0 if and only if X i

M(ζ) = 0 for all ζ ∈ U .

(iii) Each processing choice is independent of all other processing choices.

(iv) For M ∈ N, XM is uncorrelated with (giM − ciMτ iM), ciMτ
i
M , and τ iM .

It is clear that (X i
M) is a sequence of Bernoulli trials.

Parameters of Task Types:The above random processes are characterized by the

parameters below. Tasks within a particular type all share these parameters;

that is, these parameters also characterize each task type.

9



• λi ∈ R>0: The Poisson rate for process (Mi(ts) : ts ∈ R≥0) (i.e., λi =

1/E(T i1)). An expanded version of this model might introduce detection

errors by modulating this parameter, which might also be made to depend

on search speed. Pavlic and Passino [46] incorporate both of these aspects

with the analogous parameter of a similar agent model.

• τi ∈ R: The average processing time, given in seconds, for processing a

task of type i (i.e., gi = E(τ i1)).

• ci ∈ R: The average fuel cost rate, given in points per second, for processing

a task of type i (i.e., ci = E(ci1)).

• gi ∈ R: The average gross gain, given in points, for processing a task of

type i (i.e., gi = E(gi1)).

• pi ∈ [0, 1]: An agent’s preference for processing a task of type i.

– If pi = 0, then no tasks of type i are processed.

– If pi ∈ (0, 1), then tasks of type i are processed according to successes

of a Bernoulli trial with parameter pi.

– If pi = 1, then all tasks of type i are processed.

That is, pi can be called the probability that the agent will process a task

of type i (i.e., E(X i
1) = pi). Detection errors could be introduced via this

parameter as well.

Of course, it is trivial that E(I i1) = i.

Average Gain as Function of Average Time: Unlike with processing costs, the re-

lationship between processing time and processing gain has not been made

10



explicit. In general, the model of the system will require gi to change whenever

τi changes. That is, it makes sense that a longer average processing time would

alter the average gain. Therefore, we introduce the function gi : R≥0 7→ R so

that gi(τi) represents the average gain returned from tasks of type i given an

average processing length of τi ∈ R≥0. This function is used when predicting

the optimal processing time in a given environment. We usually assume gi is

continuously differentiable.

Optimization Variables and Prey and Patch Models: The behavior of an agent is com-

pletely specified by the preference probabilities (i.e., pi for all i ∈ {1, 2, . . . , n})

and the processing times (i.e., τi for all i ∈ {1, 2, . . . , n}). All other parame-

ters are fixed with the agent’s environment. The task processing-length choice

problem refers to the case when the preference probabilities are also fixed with

the environment (i.e., absorbed into the task type encounter rates) so that the

agent is free to choose processing times only; this is called a patch model by

biologists [60]. The task-type choice problem refers to the case when the pro-

cessing times are fixed with the environment so that the agent is free to choose

preference probabilities only; this is called a prey model by biologists [60]. The

most general case, when the agent is free to choose both, is called the combined

task-type and processing-length choice problem; biologists refer to this case as

the combined prey and patch model [60].

These processes and parameters will be used throughout this document.
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2.1.3 Actual Processing Gains, Costs, and Times

Take i ∈ {1, 2, . . . , n}. For the rest of this chapter, we will also use the processes

(Gi
M), (Ci

M), and (T iM), which are defined with Gi
M , X i

Mg
i
M and Ci

M , X i
Mc

i
Mτ

i
M

and T iM , Xn
i τ

i
M for all ζ ∈ U and N ∈ N. These represent the actual processing

gain, processing cost, and processing time for each task encounter. Clearly, the gain

(processing time) of any task is independent of the gain (processing time) of any other

task; additionally, (Gi
M), (Ci

M), and (T iM) are sequences of i.i.d. random variables with

finite expectation. It is necessary for Pr(Cs = cs) = 1 for the random variables of

(Gi
M) and (Ci

M) to be i.i.d.. If this is not the case, then the random variables of (Gi
M)

and (Ci
M) will be identically but not independently distributed.

2.1.4 Important Technical Notes

This model has more flexibility than the classical OFT models described by

Stephens and Krebs [60]. It also shares one aspect of classical OFT foraging models

that is often taken for granted.

Enhanced Gain and Cost Structure: We augment the conventional classical OFT

foraging model with time-dependent costs, while not restricting the signs of our

cost and gains. That is, we allow costs and gains to be positive, zero, or negative.

In other words, negative costs may be viewed as time-dependent gains just as

negative gains may be viewed as time-constant costs. For example, a negative

search cost may be viewed as modeling the value of some other useful activity

that can only be done during searching. Some impacts of this generalization of

the gain and cost structure are discussed in Chapter 3.

12



Poisson Processes and Simultaneous Encounters: All of the assumptions listed in

Sections 2.1.1 and 2.1.2 are important, but one particular assumption (that is

also found in the classical solitary foraging model) deserves special attention,

namely that model encounters occur according to a Poisson process. A conse-

quence of this assumption is that interarrival times have a particular continuous

distribution. Additionally, this assumption implies that simultaneous encoun-

ters occur with probability zero; therefore, behavioral statistics are not affected

by the choices made by the agent on a simultaneous encounter.

2.2 Classical OFT Analysis: Encounter-Based Approach

Here, we introduce an approach to analysis of agent behavior based on classical

OFT [e.g., 16, 60]. We call this a merge before split approach. In this approach, the

encounter rates of each type are independent of the preference probabilities. That is,

the agent is considered to encounter each task and then choose whether to process the

task. Because encounters are generated by Poisson processes, an alternative approach

would be to make the preference probabilities a modifier of the encounter rates rather

than some aspect of the agent’s choice; this alternative is described in Section 2.3. The

merged processes generated by encounters with all tasks are described in Section 2.2.1.

Sections 2.2.2, 2.2.3, and 2.2.4 use renewal theory based on these merged processes

to develop statistics that can be used as optimization criteria for agent behavior.

2.2.1 Processes Generated from Merged Encounters

Above, we defined n Poisson processes corresponding to the n task types. However,

as an agent searches, it encounters tasks from n processes at once. That is, the agent

13



faces the merged Poisson process (M(ts) : ts ∈ R≥0) defined for all ζ ∈ U and all

ts ∈ R≥0 by

M(ts) ,
n∑
i=1

Mi(ts)

which carries with it the interevent time process (ΥM). In other words, for any lifetime

ζ ∈ U , Mp(ts) represents the number of tasks encountered after searching for ts time.

We call the encounter rate for this process λ, where λ =
∑n

i=1 λi by the theory of

merged Poisson processes [64]. Therefore, E(Υ1) = 1/λ. Because this process is also

a Markov renewal process, aslimts→∞M(ts) =∞; however, because this is a Poisson

counting process, E(M(ts)) = λts for all ts ∈ R≥0.

Merged Task-Type Processes

Define the random processes (aM), (fM), (kM), and (IM) as merged versions

of the families ((Gi
M))ni=1, ((Ci

M))ni=1, ((T iM))ni=1, and ((I iM))ni=1 respectively. Each of

these processes is an i.i.d. sequence of random variables. The random variables I1 and

Υ1 are assumed to be independent. For any lifetime ζ ∈ U , I1 = i would indicate that

the first encounter was generated by process (Mi(ts) : ts ∈ R≥0). It will be convenient

for us to introduce the symbols g, c, and τ defined by

g , E (a1) and c , E (f1) and τ , E (k1)

These random variables respectively represent the net gain, cost, and time for pro-

cessing a task during a single arbitrary OFT renewal cycle. We also use the notation

g, c, and τ defined by

g , E (g) = E (a1) and c , E (c) = E (f1) and τ , E (τ) = E (k1)

14



From the theory of merged Poisson processes, Pr(I1 = i) = λi/λ for all i ∈ {1, 2, . . . , n}.

Combining this with the fact that λ =
∑n

i=1 λi and a property7 of expectation yields

g =
n∑
j=1

λj
λ
pjgj and c =

n∑
j=1

λj
λ
pjcjτj and τ =

n∑
j=1

λj
λ
pjτj

So, these expectations are weighted sums of parameters. In particular, if n = 1,

g = p1g1(τ1) and c = p1c1τ1 and τ = p1τ1

This result is useful when visualizing optimization results. Additionally,

E (CsΥ1|I1 = i) = E (CsΥ1) =
cs

λ

Below, we use these results frequently in expressions of statistics.

Net Gain, Cost, and Time Processes

Now, we define random processes (G̃N), (C̃N), and (T̃N) with

G̃N , aN − fN − CsΥN and C̃N , fN + CsΥN and T̃N , kN + ΥN

for all N ∈ N and ζ ∈ U . It is clear that (G̃N), (C̃N), and (T̃N) are i.i.d. sequences of

random variables with finite expectation. In some cases, it will be interesting to look

at the gross gain returned to an agent. Thus, we define the process (G̃N + C̃N) as

well8. By the above definitions, G̃1 + C̃1 = g and G̃N + C̃N = aN for all N ∈ N and

ζ ∈ U . The statistics of these random variables are of interest to us. In particular,

7For random variables X and Y , E(X) = E(E(X|Y )).
8Recall that the all cost rates may be negative in this model. While these costs would be

interpreted as gains in this case, they are not included in this definition of gross gain. Gross gain is
all gains before the impact of costs, positive or negative.
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Search Encounter
Process

Ignore

Figure 2.1: The classical OFT Markov renewal process, where the solid dot is the
renewal point that starts each cycle.

E
(
G̃1

)
= g − c− cs

λ
(2.1)

E
(
C̃1

)
= c+

cs

λ
(2.2)

E
(
T̃1

)
= τ +

1

λ
(2.3)

E
(
G̃1 + C̃1

)
= g (2.4)

Also, Pr(T̃1 = 0) = 0 because E(T̃1) > 0 and Pr(Υ1 = 0) = 0

2.2.2 Markov Renewal Process

Because (T̃N) is an i.i.d. sequence of random variables with 0 < E(T̃1) < ∞ and

Pr(T̃1) = 0, the process (N(t) : t ∈ R≥0) defined by

N(t) , sup

{
N ∈ N :

N∑
i=1

T̃i ≤ t

}
= sup

{
N ∈ N :

N∑
i=1

(ki + Υi) ≤ t

}

for all t ∈ R≥0 and all ζ ∈ U is a Markov renewal process with interarrival process

(T̃N). This process represents the number of tasks encountered from time 0 to time

t (i.e., t is a measure of the agent’s lifetime, not how long the agent has searched).

This Markov renewal process is depicted in Figure 2.1, and one iteration around this

process will be known as an OFT cycle. That is, because the agent can choose to

process or ignore a task, the holding time for the renewal process always includes some
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search time and may include processing time if an encounter is followed by a decision

to process the task. By definition of this process, simultaneous encounters occur with

probability zero. As with any Markov renewal process, aslimt→∞N(t) =∞; however,

while E(M(ts)) is known for all ts ∈ R≥0, a derivation of E(N(t)) for all t ∈ R≥0 is

outside the scope of this work. Fortunately, applications rarely require the precise

form of this expectation. Additionally, it is known that for all ζ ∈ U and all t ∈ R≥0,

N(t) ≤M(t); therefore, 0 ≤ E(N(t)) ≤ λt for all t ∈ R≥0.

Encounter Times: Statistics and Stochastic Limits

The process (T̃N) defined with T̃N ,
∑N

i=1 T̃i for all N ∈ N and all ζ ∈ U is the

sequence of encounter times for (N(t) : t ∈ R≥0). Because (T̃N) is an i.i.d. sequence

of random variables with finite expectation,

E
(
T̃N
)

= N E
(
T̃1

)
=
N

λ
+Nτ

for all N ∈ N. It can be shown9 that

aslim
t→∞

N(t)

t
= lim

t→∞

E (N(t))

t
= aslim

N→∞

N

T̃N
= lim

N→∞
E

(
N

T̃N

)
=

1

E
(
T̃1

) (2.5)

Therefore, the ratio 1/E(T̃1) may be called the long-term encounter rate of (N(t) :

t ∈ R≥0). Similarly, it is also the case that

aslim
t→∞

T̃ (t)

t
= lim

t→∞

E
(
T̃ (t)

)
t

= 1

which is not surprising; that is, as the agent’s lifetime increases, the time spent waiting

for the very next task encounter becomes negligible.

9See Appendix A.
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2.2.3 Markov Renewal-Reward Processes

The processes (G̃N) and (C̃N) can be viewed as sequences of gains and losses,

respectively, corresponding to each (N(t) : t ∈ R≥0) encounter. Define the corre-

sponding cumulative processes10 (G̃N), (C̃N), and (G̃N + C̃N) with

G̃N ,
N∑
i=1

G̃i and C̃N ,
N∑
i=1

C̃i and G̃N + C̃N =
N∑
i=1

(
G̃i + C̃i

)
for all N ∈ N and all ζ ∈ U . Also define the Markov renewal-reward processes11

(G̃(t) : t ∈ R≥0), (C̃(t) : t ∈ R≥0), and (T̃ (t) : t ∈ R≥0) with

G̃(t) , G̃N(t) =

N(t)∑
i=1

G̃i and C̃(t) , C̃N(t) =

N(t)∑
i=1

C̃i and T̃ (t) , T̃N(t) =

N(t)∑
i=1

T̃i

and the process (G̃(t) + (̃C)(t) : t ∈ R≥0) accordingly with

G̃(t) + C̃(t) = G̃N(t) + C̃N(t) =

N(t)∑
i=1

(
G̃i + C̃i

)
for all t ∈ R≥0 and ζ ∈ U .

2.2.4 Reward Process Statistics

Because (G̃N) and (C̃N) are i.i.d. sequences of random variables with finite expec-

tation, for all N ∈ N,

E
(
G̃N
)

= N E
(
G̃1

)
= N

(
g − c− cs

λ

)
(2.6)

E
(
C̃N
)

= N E
(
C̃1

)
= N

(
c+

cs

λ

)
(2.7)

and, as we showed above,

E
(
T̃N
)

= N E
(
T̃1

)
= N

(
1

λ
+ τ

)
(2.8)

10A cumulative process is a sequence of partial sums of another process.
11A Markov renewal-reward process uses a Markov renewal process to extend the indexing of a

cumulative process from N to R≥0.
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It is clearly the case that

E
(
G̃N + C̃N

)
= N E

(
G̃1 + C̃1

)
= Ng (2.9)

Also, for all t ∈ R≥0,

E
(
G̃(t)

)
= E (N(t)) E

(
G̃1

)
= E (N(t))

(
g − c− cs

λ

)
(2.10)

E
(
C̃(t)

)
= E (N(t)) E

(
C̃1

)
= E (N(t))

(
c+

cs

λ

)
(2.11)

E
(
T̃ (t)

)
= E (N(t)) E

(
T̃1

)
= E (N(t))

(
1

λ
+ τ

)
(2.12)

and, clearly,

E
(
G̃(t) + C̃(t)

)
= E (N(t)) E

(
G̃1 + C̃1

)
= E (N(t)) g (2.13)

Stochastic Limits of Net Gain Processes

It can be shown12 that there exists an N ∈ N such that E(1/T̃N) <∞, and so by

results of Johns and Miller [28],

aslim
t→∞

G̃(t)

t
= lim

t→∞

E
(
G̃(t)

)
t

= aslim
N→∞

G̃N

T̃N
= lim

N→∞
E

(
G̃N

T̃N

)
=

E
(
G̃1

)
E
(
T̃1

) (2.14)

This result is frequently used in classical OFT. The ratio E(G1)/E(T1) may be called

the long-term (average) rate of net gain and is expressed by

E
(
G̃1

)
E
(
T̃1

) =
g − c− cs

λ
1
λ

+ τ
=
λ (g − c)− cs

1 + λτ
=

n∑
i=1

λipi(gi − ciτi)− cs

1 +
n∑
i=1

λipiτi

So,

E
(
G̃1

)
E
(
T̃1

) =
E
(
G̃N
)

E
(
T̃N
) =

E
(
G̃(t)

)
E
(
T̃ (t)

) (2.15)

for all N ∈ N and t ∈ R>0.

12See Appendix A.

19



Variance Under Pseudo-Deterministic Conditions

The statistics of the processes (G̃N), (C̃N), (T̃N), and (G̃N + C̃N) are of particular

interest to us. The expectation of the random variables in these processes are given in

Equations (2.6), (2.7), (2.8), and (2.9), respectively; however, it is useful to know their

variances13 as well, especially when considering risk. Because these four processes are

collections of i.i.d. random variables,

var
(
G̃N
)

= N var
(
G̃1

)
= N (var (a1 − f1) + var (CsΥ1))

var
(
C̃N
)

= N var
(
C̃1

)
= N (var (f1) + var (CsΥ1))

var
(
T̃N
)

= N var
(
T̃1

)
= N (var (Υ1) + var (CsΥ1))

var
(
G̃N + C̃N

)
= N var

(
G̃1 + C̃1

)
= N var (a1)

for all N ∈ N. However, the derivations of the variances of G̃1, C̃1, T̃1, and G̃1+C̃1 are

difficult in general. Additionally, they require us to introduce parameters representing

the variance of the random variables gi1, c
i
1 and τ i1 for all i ∈ {1, 2, . . . , n}, which may

not be known in applications. Thus, we focus on one particular simplified case; for

all i ∈ {1, 2, . . . , n}, we assume that

Pr(gi1 = gi) = Pr(ci1 = ci) = Pr(τ ii = τi) = 1

This roughly means that the gains, cost rates, and processing times for tasks of any

particular type are all deterministic. We also make use of the following assumptions.

(i) For all i ∈ {1, 2, . . . , n}, X i
1 is uncorrelated with each of of (gi1 − ci1τ i1)2, (ci1τ

i
1)

2,

and (τ i1)
2.

13For a random variable X, the variance var(X) is E((X−E(X))2), which is equivalent to E(X2)−
E(X)2. Variance is sometimes called the second central moment because it integrates the squared
differences from the mean (i.e., the center of the distribution). This is a measure of the likely
variability of outcomes.
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(ii) For all i ∈ {1, 2, . . . , n}, gi1 is uncorrelated with ci1τ
i
1.

(iii) a1 − f1 is uncorrelated with CsΥ1.

(iv) (Cs)2 is uncorrelated with (Υ1)
2.

(v) (CsΥ1)
2 is independent of I1.

From these assumptions, we derive the second moments

E
(
g2
)

=
n∑
i=1

λi
λ
pi (gi)

2 (2.16)

E
(
c2
)

=
n∑
i=1

λi
λ
pi (ciτi)

2 (2.17)

E
(
τ 2
)

=
n∑
i=1

λi
λ
pi (τi)

2 (2.18)

E
(
(g − c)2) =

n∑
i=1

λi
λ
pi (gi − ciτi)2 (2.19)

which can be used to derive other second moments and variances. So, for all N ∈ N,

E
(
G̃2

1

)
= E

(
(g − c)2)− 2

cs

λ
E
(
G̃1

)
(2.20)

E
(
C̃2

1

)
= E

(
c2
)
− 2

cs

λ
E
(
C̃1

)
(2.21)

E
(
T̃ 2

1

)
= E

(
τ 2
)
− 2

1

λ
E
(
T̃1

)
(2.22)

E

((
G̃1 + C̃1

)2
)

= E
(
g2
)

(2.23)

and

var
(
G̃N
)

= N

(
var (g − c) +

(
cs

λ

)2
)

(2.24)

var
(
C̃N
)

= N

(
var (c) +

(
cs

λ

)2
)

(2.25)

var
(
T̃N
)

= N

(
var (τ) +

(
1

λ

)2
)

(2.26)

var
(
G̃N + C̃N

)
= N var (g) (2.27)
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Under these assumptions, the only variance in the model comes from the varying time

spent searching for tasks and the uncertainty in the type of task encountered.

2.3 Finite Lifetime Analysis: Processing-Based Approach

Recall that the agent suffers no recognition cost upon an encounter with a task.

Therefore, it makes sense to exclude tasks that are ignored (i.e., not chosen for pro-

cessing) from the model entirely by adjusting the encounter rate for each task type.

This adjustment is possible in our model specifically because encounters are generated

by Poisson processes. Thus, in our approach, we split the task-type processes imme-

diately to thin them of their ignored tasks. We then merge these n thinned processes

to form a merged process generated by only the task encounters that result in process-

ing. We can then proceed in the same way as the classical OFT approach, except we

assume the agent processes every task from this merged process. Thus, we call this a

split before merge approach. This approach differs from the classical OFT approach

which splits based on processing after merging the task-type processes. Because the

approach proceeds in an identical way as classical OFT after these modifications,

most of this section provides results without a great deal of justification.

2.3.1 Poisson Encounters of Processed Tasks of One Type

For all i ∈ {1, 2, . . . , n}, define (Mp
i (ts) : ts ∈ R≥0) and λpi ∈ R>0,

Mp
i (ts) ,

Mi(ts)∑
i=1

Xi and λpi , piλi

for all ts ∈ R≥0 and ζ ∈ U . Also define Gp with Gp , {i ∈ {1, 2, . . . , n} : pi > 0}.

Roughly speaking, for all ζ ∈ U , Mp
i (ts) is a version of Mi(ts) with all task encounters

that do not result in processing removed; that is, Mp
i (ts) is the number of tasks
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processed after searching for ts time. For all i ∈ Gp, (Mp
i (ts) : ts ∈ R≥0) is a split

Poisson process with rate λpi .Therefore, for all i ∈ Gp, define (Ĝi
M), (Ĉi

M), (T̂ iM),

and (Î iM) as thinned versions of (Gi
M), (Ci

M), (T iM), and (I iM) respectively. For all

i ∈ {1, 2, . . . , n} with i /∈ Gp, define Ĝi
M = Ĉi

M = T̂ iM = 0 and Î iM = i for all

M ∈ N. Now we may proceed in an identical way as classical OFT using these

thinned processes; however, because the pi parameter has been absorbed into λpi , it

can be omitted.

Poisson Encounters of All Processed Tasks

Assume that Gp 6= ∅. This assumption follows from the requirement that an agent

must process some finite number of tasks in its lifetime. Define (Mp(ts) : ts ∈ R≥0)

and λp ∈ R>0 with

Mp(ts) ,
∑
i∈Gp

Mp
i (ts) =

n∑
i=1

Mp
i (ts) and λp ,

∑
i∈Gp

λpi =
n∑
i=1

λpi

for all ts ∈ R≥0 and all ζ ∈ U . (Mp(ts) : ts ∈ R≥0) is a merged Poisson process with

rate λp. The process is generated only by encounters that lead to processing. That

is, for all ζ ∈ U , Mp(ts) is the total number of tasks processed after searching for ts

time. Call the interevent time process for this task (Υp
m). Therefore, E(Υp

1) = 1/λp,

aslimts→∞M
p(ts) =∞, and E(Mp(ts)) = λpts for all ts ∈ R≥0.

Merged Task-Type Processes

Define the random processes (apM), (fp
M), (kp

M), and (IpM) as merged versions

of the families ((Ĝi
M))ni=1, ((Ĉi

M))ni=1, ((T̂ iM))ni=1, and ((Î iM))ni=1 respectively. Each of

these processes is an i.i.d. sequence of random variables, where Ip1 and Υp
1 are assumed

to be independent. We use the notations gp, cp, and τ p defined by

gp , ap1 and cp , fp
1 and τ p , kp

1
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These respectively represent the gain, cost, and time from processing during a single

processing renewal cycle. We also define the symbols gp, cp, and τ p with

gp , E (gp) = E (ap1) and cp , E (cp) = E (fp
1) and τ p , E (τ p) = E (kp

1)

respectively. Therefore,

gp =
n∑
i=1

λpi
λp
gj and cp =

n∑
i=1

λpi
λp
cjτj and τ p =

n∑
i=1

λpi
λp
τj

So, these expectations are weighted sums of parameters. In particular, if n = 1 (and

p1 = 1),

gp = g1(τ1) and cp = c1τ1 and τ p = τ1

This result is useful when visualizing optimization results. Additionally,

E (CsΥp
1|I

p
1 = i) = E (CsΥp

1) =
cs

λp

We will use these results frequently in expressions of statistics of interest.

2.3.2 Process-Only Markov Renewal Process

Define i.i.d. random processes (GNp), (CNp), and (TNp) with

GNp , apNp − fp
Np − CsΥp

Np

CNp , fp
Np + CsΥp

Np

TNp , kp
Np + Υp

Np
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Find and Process

Figure 2.2: The process-only Markov renewal process, where the solid dot is the
renewal point that starts each cycle.

for all Np ∈ N and ζ ∈ U . Clearly, the i.i.d. process (GNp+CNp) has GNp+CNp = apNp

for all Np ∈ N and ζ ∈ U . Also, Pr(T1 = 0) = 0 and

E (G1) =
n∑
i=1

λpi
λp

(gi − ciτi)−
cs

λp
(2.28)

E (C1) =
n∑
i=1

λpi
λp
ciτi +

cs

λp
(2.29)

E (T1) =
1

λp
+

n∑
i=1

λpi
λp
τi (2.30)

E (G1 + C1) =
n∑
i=1

λpi
λp
gi (2.31)

Because 0 < E(T1) <∞, define (Np(t) : t ∈ R≥0) with

Np(t) , sup

{
Np ∈ N :

Np∑
i=1

Ti ≤ t

}

for all t ∈ R≥0 and ζ ∈ U . That is, for all ζ ∈ U , Np(t) is the total number

of tasks processed from time 0 to total time t. This is a Markov renewal process

depicted in Figure 2.2, and one iteration around this process will be known as a

processing cycle. The holding time for this process always includes both search and

processing time. Clearly, (TNp) is the interevent time process, aslimNp(t) =∞, and

0 ≤ E(Np(t)) ≤ λpt for all t ∈ R≥0.
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Cumulative Reward Processes and Their Statistics

Define the cumulative processes (GNp
), (CNp

), and (GNp
), (CNp

), and (TN
p
) with

GNp

,
Np∑
i=1

Gi and CNp

,
Np∑
i=1

Ci and TN
p

,
Np∑
i=1

Ti

and the Markov renewal-reward processes (G(t) : t ∈ R≥0), (C(t) : t ∈ R≥0), and

(T (t) : t ∈ R≥0) with

G(t) , GNp(t) and C(t) , CNp(t) and T (t) , TN
p(t)

Clearly, processes (GNp
+CNp

) and (G(t)+C(t) : t ∈ R≥0) are well-defined. Therefore,

for all Np ∈ N

E
(
GNp)

= Np E (G1) and E
(
CNp)

= Np E (C1) and E
(
TN

p)
= Np E (T1)

and so E(GNp
+ CNp

) = Np E(G1 + C1). Also, for all t ∈ R≥0,

E (G(t)) = E (Np(t)) E (G1)

E (C(t)) = E (Np(t)) E (C1)

E (T (t)) = E (Np(t)) E (T1)

and so E(G(t) + C(t)) = E(Np(t)) E(G1 + C1).

Limits of Cumulative Reward Processes

There exists14 an Np ∈ N such that E(1/Np) <∞, so

aslim
t→∞

G(t)

t
= lim

t→∞

E (G(t))

t
= aslim

Np→∞

GNp

TNp = lim
Np→∞

E

(
GNp

TNp

)
=

E (G1)

E (T1)
(2.32)

and

aslim
t→∞

Np(t)

t
= lim

t→∞

E (Np(t))

t
= aslim

Np→∞

Np

TNp = lim
Np→∞

E

(
Np

TNp

)
=

1

E (T1)
(2.33)

14See Appendix A.
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The ratio E(G1)/E(T1) may be called the long-term (average) rate of net gain and

has the expression

E (G1)

E (T1)
=
gp − cp − cs

λp

1
λp

+ τ p
=

n∑
i=1

λpi (gi − ciτi)− cs

1 +
n∑
i=1

λpi τi

=
λp (gp − cp)− cs

1 + λpτ p

So,

E (G1)

E (T1)
=

E
(
GN
)

E (TN)
=

E (G(t))

E (T (t))
(2.34)

for all N ∈ N and t ∈ R>0. Additionally, E(G1)/E(T1) = E(G̃1)/E(T̃1), which shows

an important connection between this approach and the classical OFT approach.

Variance Under Pseudo-Deterministic Conditions

To define the variance of (GNp
), (CNp

), (TN
p
), and (GNp

+ CNp
), we must again

assume that Pr(gi1 = gi) = Pr(ci1 = ci) = Pr(τ ii = τi) = 1 and that

(i) For all i ∈ {1, 2, . . . , n}, Xp
1 is uncorrelated with each of of (gi1 − ci1τ i1)2, (ci1τ

i
1)

2,

and (τ i1)
2.

(ii) ap1 is uncorrelated with CsΥp
1.

(iii) (CsΥp
1)

2 is independent of Ip1 .

(iv) (Cs)2 is uncorrelated with (Υp
1)

2.

(v) For all i ∈ {1, 2, . . . , n}, gi1 is uncorrelated with ci1τ
i
1.
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These assumptions yield the second moments

E
(
(gp)2) =

n∑
i=1

λpi
λp

(gi)
2 (2.35)

E
(
(cp)2) =

n∑
i=1

λpi
λp

(ciτi)
2 (2.36)

E
(
(τ p)2) =

n∑
i=1

λpi
λp

(τi)
2 (2.37)

E
(
(gp − cp)2) =

n∑
i=1

λpi
λp

(gi − ciτi)2 (2.38)

which can be used to derive variances and other second moments. In particular, for

all Np ∈ N,

E
(
G2

1

)
= E

(
(gp − cp)2)− 2

cs

λp
E (G1) (2.39)

E
(
C2

1

)
= E

(
(cp)2)− 2

cs

λp
E (C1) (2.40)

E
(
T 2

1

)
= E

(
(τ p)2)− 2

1

λp
E (T1) (2.41)

E
(
(G1 + C1)

2) = E
(
(gp)2) (2.42)

and

var
(
GNp)

= Np

(
var (gp − cp) +

(
cs

λp

)2
)

(2.43)

var
(
CNp)

= Np

(
var (cp) +

(
cs

λp

)2
)

(2.44)

var
(
TN

p)
= Np

(
var (τ p) +

(
1

λp

)2
)

(2.45)

var
(
GNp

+ CNp)
= Np var (gp) (2.46)
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2.4 Relationship Between Analysis Approaches

Recall that for all i ∈ {1, . . . , n}, λpi = piλi. Keeping this in mind, it is clear that

in general (i.e., for any t ∈ R≥0, N,N
p ∈W)

E (G(t)) 6= E
(
GNp) 6= E (G1) 6= E

(
G̃1

)
6= E

(
G̃N
)
6= E

(
G̃(t)

)
and

E (T (t)) 6= E
(
TN

p) 6= E (T1) 6= E
(
T̃1

)
6= E

(
T̃N
)
6= E

(
T̃ (t)

)
However,

E (G(t))

E (T (t))
=

E
(
GNp)

E (TNp)
=

E (G1)

E (T1)
=

E
(
G̃1

)
E
(
T̃1

) =
E
(
G̃N
)

E
(
T̃N
) =

E
(
G̃(t)

)
E
(
T̃ (t)

) (2.47)

for all t ∈ R>0 and N,Np ∈ N. Note the following.

(i) E(T̃1) > 0 and E(T1) > 0, and so all of the ratios in Equations (2.47) are

well-defined.

(ii) There are no restrictions on the sign of E(G̃1) or E(G1). These can be negative,

zero, or positive.

(iii) There are no restrictions on the sign of E(C̃1) or E(C1). These can be negative,

zero, or positive.

Points (ii) and (iii) allow for flexible interpretations of gain and cost. With the

appropriate assignment of signs, gains can be viewed as time-invariant costs, and

costs can be viewed as time-varying gains. This shows the flexibility of this generalized

model.
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The equalities in Equation (2.47) imply that the stochastic limits in Equation (2.5)

are equal to the stochastic limits in Equation (2.33); regardless of approach, the long-

term rate of net point gain is equivalent. For any number of processing cycles or

OFT cycles completed, the ratio of expected net gain to expected time will be equal.

Processing is guaranteed in a processing cycle, so a single processing cycle has a higher

expected net gain than a single OFT cycle; however, the expected holding time of a

processing cycle is longer because encounters with ignored tasks are included as part

of the cycle’s holding time. Thus, the ratio of expected net gain to expected time is

the same for cycles of either type.

2.5 Weaknesses of the Model

Several features are not included in the model.

Rates and Costs: Recognition costs, variable search rates, and variable processing

rates are not modeled. Also, although encounters are assumed to happen at

random, they are assumed to be driven by a homogenous Poisson process (i.e.,

the average rate of encounters is time-invariant).

Perfect Detection: When an agent encounters a task, its behavior depends upon the

type of that task. The model assumes that the agent can detect task types with

no error. This model has been built so that it may potentially be augmented

with support for detection error.

Linear Cost Model: All costs are assumed to be linear in time in this model. Thus,

given any interval of time, the cost of that interval of time is assumed to be the

product of the length of that interval with some constant, which we call a cost
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rate. In most cases, that rate need not be deterministic; however, it must be

uncorrelated with the interval of time.

Known Search Cost Rate: Search costs are also assumed by linear with respect to

time; however, they are also assumed to be deterministic. This assumption is

necessary to use the results from renewal theory that are central to classical

OFT methods. Thus, in many cases where these results are not used, this

deterministic assumption can be relaxed.

Competition and Cooperation: The direct effect of other agents (e.g., competition

or cooperation) on the environment is not modeled here in any specific way.

Cody [19] views this as a weakness of the early solitary foraging models and

introduces an optimal diet model that incorporates multiple foragers competing

for resources. However, the parameters of the Cody model are too abstract to

be specified with physical quantities, and each forager in the model has a coarse

set of behavioral options. Additionally, many engineering applications fit the

solitary model well (e.g., autonomous surveillance vehicles).

State Dependency: Our model is not state-dependent. That is, the reaction of an

agent to an encounter does not change over its lifetime (i.e., it is a static model).

Schoener [55] documents many cases where foragers adjust their behavior when

satiated. Houston and McNamara [24] handle state-dependent behaviors math-

ematically and show that they will often be advantageous when compared to

static behaviors. However, in engineering applications it may be desirable to

have behaviors that do not change over time. For example, if the computa-

tional abilities of an agent are limited, complex state-dependent behavior may

31



not be possible. There may also be biological examples where dynamic adap-

tations based on feedback are not feasible. Thus, optimization over a set of

time-invariant behaviors may be desirable in a number of applications.

Despite the limitations of the model, it is sufficiently generic to have utility in a

wide range of applications. Adding any further complexity to the model may make

solutions too complex to be practical for implementation.
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CHAPTER 3

STATISTICAL OPTIMIZATION OBJECTIVES FOR
SOLITARY BEHAVIOR

The efficacy of any particular behavior may be measured quantitatively in various

ways. In this chapter, we approach the problem of combining appropriate statis-

tics so that the utility of solitary behaviors can be measured for a given application.

Choosing a static behavior to maximize some unit of expected value is analogous to

choosing investments to maximize future returns. Reflecting this analogy, behavioral

ecology has borrowed methods from investment theory and capital budgeting for be-

havioral analysis. We also use these methods, collectively known as modern portfolio

theory (MPT), to analyze our model; however, we generalize the classical OFT ap-

proach. This approach not only allows it to be applied to engineering problems, but

it also provides answers to some of the criticisms of the theory. Additionally, we sug-

gest new ways of describing optimal agent behavior and relationships among existing

methods.

The major purpose of this chapter is to introduce functions that combine statistics

of the agent model to measure the utility of solitary behaviors. Behaviors that maxi-

mize these functions may be called optimal. In Section 3.1, we define the structure of

the optimization functions that are interesting to us. In Section 3.2, we describe the
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optimization approach used frequently in classical OFT. In Section 3.3, we propose

an alternate approach and give new or refined optimization objectives for analyzing

agent behavior. Finally, in Section 3.4, we briefly discuss how insights from post-

modern portfolio theory (PMPT) may inspire new optimization approaches in both

agent design in engineering and agent analysis in biology. All results discussed in this

chapter will be qualitative and justified graphically. Specific analytical optimization

results for some of the objectives discussed here are given in Chapter 4.

3.1 Objective Function Structure

Optimization functions usually combine multiple optimization objectives in a way

that captures the relative value of each of those objectives. In our case, each of our

objectives is a statistic taken from the model in Chapter 2. Therefore, in Section 3.1.1,

we present statistics that could serve as objectives for optimization and methods for

combining them. In Section 3.1.2, we discuss motivations for constraining the set

of feasible behaviors and show how these constrained sets can be incorporated into

optimization. Finally, in Section 3.1.3, we discuss the importance of exploring a

variety of optimization criteria.

3.1.1 Statistics of Interest

Table 3.1 shows some obvious choices for statistics to be used as optimization

objectives. However, other statistics like E(GN/TN) (i.e., average gain per unit time)

or E((GN + CN)/CN) (i.e., average efficiency) for all N ∈ N could also be relevant.

Economists [e.g., 17, 29, 30, 31, 63] might argue that the skewness1 of each of these

1For a random variable X, its skewness is a measure of the symmetry of its (Lebesgue) probability
density fX . The standard definition of skewness is E((X − E(X))3)/ std(X)3. Note that this is a
scaled version of the third central moment.
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Means Variances

Net Gain Statistics: E(G1) E(G̃1) var(G1) var(G̃1)

Cost Statistics: E(C1) E(C̃1) var(C1) var(C̃1)

Time Statistics: E(T1) E(T̃1) var(T1) var(T̃1)

Table 3.1: Common statistics used in optimization of solitary agent behavior.

random variables would be a reasonable statistic to study because it may be desirable

to have random variables that are distributed asymmetrically (e.g., net gains that are

more often high than low)2. Of course, any one of these statistics may not capture

all relevant objectives of a problem. For example, it may be desirable to maximize

both E(G1) and −E(T1) (i.e., minimize E(T1)); however, it may not be possible to

accomplish both of these simultaneously. Therefore, here we discuss the construction

of compound objectives that allow for optimization with respect to multiple criteria.

Take a problem with m ∈ N relevant optimization objectives. For all objective

functions to be minimized, replace the function with its additive or multiplicative

inverse (i.e., replace a function f with the function −f or, for functions with strictly

positive or strictly negative ranges, 1/f); therefore, the ideal objective is to maximize

all m functions. Collect these m objective functions into m-vector x where x =

{x1, x2, . . . , xm}. Use the weighting vector w ∈ Rm
≥0 with w = {w1, w2, . . . , wm} to

represent the relative value of each of these objectives. Therefore, the compound

objective functions

w1x1 + w2x2 + · · ·+ wmxm or min{w1x1, w2x2, . . . , wmxm} (3.1)

2This might be called skewness preference. It is also desirable to optimize skewness simply to
prevent deleterious asymmetry.
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represent different ways to combine all m objectives. The former of these two com-

pound objectives is a linear combination of statistics (i.e., w>x), and an optimal

behavior for this function will be Pareto efficient3 with respect to the m objective

functions. Maximization of the latter of these two compound objectives represents

a maximin optimization problem. Lagrange multiplier methods (i.e., Karush-Khun-

Tucker (KKT) conditions) [10] can be used to study the optimal solutions to both

forms in Equation (3.1).

3.1.2 Optimization Constraints

In a given foraging problem, it is not necessarily the case that all modeled behav-

iors are applicable or even possible. That is, optimization analysis must be considered

with respect to a set of feasible behaviors. The following are some examples of con-

straints that have been found in the literature; suggestions for how those constraints

could be implemented in this model are also given.

Time Constraints: The economics-inspired graphical foraging model of Rapport [51]

considers level indifference curves of an energy function. Each of these curves

represents a set of combinations of prey where each combination returns the

same energetic gain to the forager. Rapport then assumes that the forager has

a finite lifetime and surrounds all prey combinations that can be completed

in this time with a boundary called the consumption frontier 4. The optimal

3To be Pareto efficient or Pareto optimal means that any deviation that yields an increase in
one objective function will also result in a decrease in another objective function. Pareto optimal
solutions characterize tradeoffs in optimization objectives. If deviation from some behavior will
increase all objective functions, then that behavior cannot be Pareto efficient. The set of all Pareto
efficient solutions is called the Pareto frontier.

4The consumption frontier is a Pareto frontier. Diets on this frontier return the greatest gain for
their foraging time.
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diet combination is the point of tangency between the consumption frontier

and some indifference curve. In other words, this is the combination of prey

items that returns the highest energetic gain for the given finite lifetime. We

can quantify this idea by maximizing E(G(t)) subject to the constraint t ≤

T where T ∈ R>0. Because Rapport gives a qualitative explanation for the

observations in Murdoch [42], the analytical application of our model with this

time constraint could give a quantitative explanation.

Nutrient Constraints: Pulliam [48] optimizes a point gain per unit time function

similar in form to E(G̃1)/E(T̃1), but the notion of nutrient constraints is added.

That is, there are m ∈ N nutrients and all tasks of type i ∈ {1, 2, . . . , n}

return quantity ρij of nutrient j ∈ {1, 2, . . . ,m}. Pulliam then calls Mj ∈ R≥0 a

minimum amount of nutrient j that must be returned from processing. The goal

is to maximize the rate of point gain while maintaining this minimum nutrient

level. These nutrient constraints could be added to our model as well. As

Pulliam notes, under these constraints, optimal behaviors often include partial

preferences. In the unconstrained classical OFT problem, it is sufficient for

optimality to either process all or none of tasks of a particular type; however,

with nutrient constraints it may be necessary for optimality that only a fraction

of the encountered tasks of a certain type be processed5.

Encounter-Rate Constraints: Gendron and Staddon [21] and Pavlic and Passino [46]

explore the optimization of a point gain per unit time function as well; however,

5In Chapter 4, we generalize the classical OFT result to show that over a closed interval of
preference probabilities, sufficiency is associated with the endpoints. The results of Pulliam [48]
effectively make that interval a function of nutrition requirements; under these constraints, partial
preferences may be necessary for optimality.
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the impact of speed choice on imperfect detection is also introduced. That

is, with perfect detection, an increase in speed will most likely come with an

increase in encounter rate with tasks of every type. However, when detection

errors can occur, the relationship between encounter rate and speed may be

arbitrarily nonlinear. If this exact relationship is not known, it may be sufficient

to restrict search speed to a range where detection is reliable. If the impact of

search speed were added to our model (e.g., if encounter-rate was parameterized

by speed), this restriction could be modeled as constraints on search speed.

The resulting optimal behavior would include a search speed that provides the

optimal encounter rates subject to imperfect detection.

Any optimization function of a form in Equation (3.1) subject to a finite number of

equality or non-strict inequality constraints6 may be analyzed with Lagrange mul-

tiplier methods. Therefore, in principle, a wide range of constrained optimization

problems can be studied.

3.1.3 Impact of Function Choice on Optimal Behaviors

As discussed in Section 3.2.1, classical OFT results come from maximizing the

long-term rate of gain (e.g., E(G̃1)/E(T̃1)). This choice follows from the argument

of Pyke et al. [49] that optimizing this long-term rate synthesizes the two extremes,

energetic maximization and time minimization, of a general model of foraging given

by Schoener [55]. This rate approach is taken by Pulliam [48] whose quantitative

results show that the optimal diet predicted by a rate maximizer depend only on

the encounter rates with prey types in the diet. However, Rapport [51] focusses only

6A strict inequality constraint uses < or >; therefore, a non-strict or weak inequality constraint
uses ≤ and ≥.
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on gain maximization (in finite time) and shows that the optimal diet depends on

encounter rates with all prey types. These two results are very different, and the only

justification for using the first result follows from a purely intuitive argument from

Pyke et al. [49]. However, the result from Rapport is entirely valid from a perspective

of the foundational work of Schoener. Therefore, it is clear that one optimization

criterion will not fit all problems. Clearly, is important to investigate other functions

that may be more appropriate for specific problems.

3.2 Classical OFT Approach to Optimization

As discussed by Stephens and Charnov [59], classical OFT approaches optimiza-

tion from two perspectives which are both based on evolutionary arguments. The

first analyzes behaviors that optimize of the asymptotic limit of rate of net gain. The

second assumes the agent must meet some energetic requirement and maximizes its

probability of success. The former, which we describe in Section 3.2.1, is called rate

maximization, and the latter, which we describe in Section 3.2.2, is described as be-

ing risk sensitive. Both approaches develop optimal static behaviors for the solitary

agent.

3.2.1 Maximization of Long-Term Rate of Net Gain

In biological contexts, it is expected that natural selection will favor foraging

behaviors that provide greater future reproductive success, a common surrogate for

Darwinian fitness. So, functions mapping specific behaviors to quantitative measures

of reproductive success can be optimized to predict behaviors that should be main-

tained by natural selection. Schoener [55] defines such a model, and while quantities

in the model are too difficult to define for most cases, behaviors predicted by the
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model fall on a continuum from foraging time minimizers (when energy is held con-

stant) to energy maximizers (when foraging time is held constant). In other words,

behaviors should be excluded if there exists another behavior that has both a higher

energy return and a lower time. Pyke et al. [49] argue that the rate of net energy

intake is the most general function to be maximized as it captures both extremes

on the Schoener continuum by asserting an upward pressure on energy intake and

a downward pressure on foraging time. This will allow a forager to achieve its en-

ergy consumption needs while also leaving it enough time for other activities such

as reproduction and predator avoidance. This interpretation is only valid over the

space of behaviors with positive net energetic intake. For example, rate maximiza-

tion puts an upward pressure on foraging time for behaviors that return negative

net energetic intake. This is not recognized by Pyke et al., and the continuum of

behaviors described by Schoener explicitly exclude these time maximizers. However,

from a survival viewpoint, it makes sense that foragers facing a negative energy bud-

get should maximize time foraging. Therefore, rate maximization encapsulates two

conditional optimization problems; it trades off net gain and total time in a way that

is dependent upon energy reserves.

The rate of net energy intake can be defined in different ways. Using the terms

from Chapter 2, it could be defined as G̃(t)/t or E(G̃(t))/t for any t ∈ R≥0 or G̃N/T̃N

or E(G̃N/T̃N) for any N ∈ N. However, Pyke et al. also argue that rates should be

calculated over the entire lifetime of the forager. Thus, rather than taking a particular

t ∈ R≥0 orN ∈ N, the asymptotic limits of these ratios should be taken. Conveniently,
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Equation (2.14) shows that all of these limits are equivalent. By Equation (2.15),

E
(
G̃1

)
E
(
T̃1

) =
E
(
G̃N∗

)
E
(
T̃N∗

) = aslim
N→∞

G̃N

T̃N
= lim

N→∞
E

(
G̃N

T̃N

)

=
E
(
G̃(t∗)

)
E
(
T̃ (t∗)

) = aslim
t→∞

G̃(t)

t
= lim

t→∞

E
(
G̃(t)

)
t

(3.2)

for any t∗ ∈ R>0 and N∗ ∈ N. For this reason, the ratio of expectations E(G̃1)/E(T̃1)

has received significant interest in classical OFT [e.g., 24, 59, 60]. We call this ratio

the long-term (average) rate of net gain. Note that by Equation (2.47) this ratio plays

an identical role in our analysis approach when we consider the asymptotic case.

Opportunity Cost and Pareto Optimality

Houston and McNamara [24] provide an interesting interpretation of E(G̃1)/E(T̃1).

They define constant γ̃∗ ∈ R to be the maximum value of E(G̃1)/E(T̃1) (i.e., the long-

term rate of net gain) over the set of feasible agent behaviors. They then treat rate

γ̃∗ as a factor converting time spent between encounters to maximum points possible

from that time. Therefore, γ̃∗ converts time into its equivalent opportunity cost (i.e.,

gain paid per unit time). They show that the behavior that maximizes

E
(
G̃1 − γ̃∗T̃1

)
(3.3)

will also be the behavior that achieves the maximum long-term rate of gain γ̃∗. So,

maximizing the long-term rate of gain is equivalent to maximizing the per-cycle gain

after being discounted by the opportunity cost of the cycle time7. Solving for this

7There is a related result by Engen and Stenseth [20] that predicts the optimal behavior on
simultaneous encounters. This is described by both Houston and McNamara [24] and Stephens and
Krebs [60], and Houston and McNamara show this simultaneous encounter result to follow from the
opportunity cost result.
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behavior can be done analytically only if γ̃∗ is known, and so the method of Houston

and McNamara numerically solves for the optimal behavior using iteration, which

could be a weakness of this approach. However, it demonstrates an important inter-

pretation of E(G̃1)/E(T̃1) as the opportunity cost of time. Not surprisingly, this also

shows that the behavior that maximizes the long-term rate of gain is Pareto optimal

with respect to maximization of E(G̃1) and (maximization) minimization of E(T̃1)

when γ̃∗ > 0 (γ̃∗ < 0); that is, this optimal behavior represents a particular tradeoff

between net gain and total time. This Pareto interpretation casts γ̃∗ as the rela-

tive importance of minimizing time, which is consistent with notion of opportunity

cost8. The numerical approach to finding γ̃∗ and the corresponding optimal behavior

is equivalent to sliding along a continuum of Pareto efficient solutions (i.e., tradeoffs

of net gain and total time).

Equilibrium Renewal Process as an Attractive Alternative

Charnov and Orians [16] note that it is desirable to derive the equilibrium renewal

process rate of net gain. That is, introduce a T1 ∈ R>0 and redefine the process to

start after T1 foraging time has past. Hence, runtime t represents the length of the

interval immediately after time T1, and so quantity of interest to Charnov and Orians

is E(G(t))/t, which represents the average rate of net gain returned to an agent when

the agent is in equilibrium with its environment (i.e., after the decay of any initial

transients). However, they point out that this rate is only known for such a process

if it is additionally assumed that the net gain on each OFT cycle is independent of

the total time of each OFT cycle (in particular, the processing time of each cycle). In

8When γ̃∗ < 0, the relative importance of minimizing time is negative, which indicates that |γ̃∗|
is the relative importance of maximizing time (i.e., an opportunity gain).
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E(G̃1) = g1(τ1)

E(T̃1) = τ1 + 1
λ

γ̃ , g1(τ1)

τ1+ 1
λ

λ = λ1

♦∗ , max {♦} τ1

g1(τ1)

γ̃∗

g∗1

t∗−1
λ

Figure 3.1: Rate maximization in classical OFT. It is assumed that n = 1, cs = 0,
and c1 = 0. The constraint that p1 = 1 is also applied. The optimal processing time
is denoted t∗, and the corresponding maximal rate is denoted γ̃∗ and shown as a slope
of a tangent line.

that case, E(G(t))/t can also be expressed as the ratio E(G̃1)/E(T̃1). Unfortunately,

it is rare that net gain and processing time will be independent in a practical system.

Analytical results are not available otherwise. For this reason, when E(G̃1)/E(T̃1) is

used it is usually assumed to be a limiting case (i.e., a rate over a long time rather

than a short-term rate after a long time).

Graphical Interpretation of Rate Maximization

When an agent is only free to choose its (average) processing times, the tasks are

said to occur in patches or to be patchily distributed [60]. Take such a case with a

single task type and no search or processing costs (i.e., n = 1, cs = c1 = 0, p1 = 1,

and τ1 ∈ R≥0). Stephens and Krebs [60] show that this problem has an insightful

graphical solution. Consider Figure 3.1. The g1(τ1) function is plotted with respect

to feasible choices of τ1 and a mark is made at the point (−1/λ, 0). For any τ1,

the corresponding long-term rate of gain is the slope of a line that connects points

(−1/λ, 0) and (τ1, g(τ1)). Therefore, the optimal τ1 (shown as t∗) is the one that

corresponds with the line with the maximal slope, and that slope will be the maximal
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long-term rate of gain (shown as γ̃∗). In Section 3.3.2, we show how this graphical

interpretation can be extended to the general case9 (i.e., with multiple types, costly

searching and processing, and tasks that may or may not be patchily distributed).

Several conclusions can be drawn from Figure 3.1. For differentiable functions

with g1(0) = 0 and g′1(0) > 0, the optimal processing time t∗ must be such that g′1(t
∗)

is equal to the long-term rate of gain. In particular, if g1 is a concave function, then

this line will be the unique tangent line that crosses (0, 1/λ). Rate-maximization for

the classical OFT model is said to follow the marginal value theorem (MVT) [14, 16].

This means that the average time an agent processes patchily distributed tasks of a

certain type is the time when the average rate of point gain for the task type drops

to the average rate of point gain for the environment. That is, processing should

continue until the marginal return from the next instant of processing is less than the

environmental average rate of gain10.

3.2.2 Minimization of Net Gain Shortfall

Because rate maximization depends only on first-order statistics, it disregards

the standard deviation11 of random variables in the model. For example, an agent

with a behavior that maximizes its long-term rate of net gain may bypass frequently

encountered tasks with small gains regardless of any survival needs. However, if

the agent must meet a net gain requirement in finite time, it may be beneficial to

9We show this interpretation using our approach to defining the relevant statistics of the model;
however, our method can also be applied to the classical OFT statistics in an obvious way (i.e., with
little more than a change of notation).

10This interpretation is really only accurate for a deterministic agent model. In the general
stochastic agent model, the MVT need only be observed in the first-order statistics of the gains and
processing times.

11For random variable X, the standard deviation std(X) is
√

var(X) (i.e., the square root of the
variance).
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decrease mean net gain if that decrease also comes with an decrease in the uncertainty

of returns.

Maximization of Reward-to-Variability Ratio

Stephens and Charnov [59] introduce a risk-sensitive agent model and an opti-

mization approach that maximizes the probability of success. Consider a solitary

agent that must acquire some minimal net gain G̃T by a time T̃ ∈ R≥0. Call µ̃ the

expectation and σ̃ the standard deviation of net gain acquired by T̃ for some given

behavior. The method states that the desired risk-sensitive behavior should maximize

the objective

µ̃− G̃T

σ̃
(3.4)

If the net gain random variable is location-scale12 with identical skewness for all

choices of location and scale13, the behavior that maximizes Equation (3.4) will also

minimize the probability that the net gain is less than the G̃T threshold14. In other

words, if the agent is said to be successful when its net gain meets or exceeds G̃T ,

then the optimal behavior will maximize the probability of success15.

12A family of distribution functions Ω is called location-scale if there exists some F ∈ Ω such that
for all F1 ∈ Ω, there exists a location m ∈ R and scale s ∈ R>0 with F1(x) = F ((x−m)/s). A random
variable is location-scale if its distribution comes from such a family. This idea of a two parameter
family of distribution functions comes from Rothschild and Stiglitz [54], and this definition of such
a class of functions is due to Bawa [6]; however, Meyer [40] gives an equivalent definition. Examples
of location-scale distributions are the normal, exponential, , and double exponential distributions.

13Location-scale distributions with mean locations and standard deviation scales will naturally
have this property.

14This is a sufficient condition; however, it is not necessary. Investment theoretic consequences of
location-scale distributions are given by Bawa [6] and Meyer [40]. The multivariate case is handled
by Chamberlain [13] and Owen and Rabinovitch [44].

15This result can be generalized slightly by considering the class of distributions where a monotonic
transformation (i.e., continuously differentiable with non-negative derivative everywhere) of random
variables is location-scale. The log-normal distribution belongs to this more general class [6].
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Location-Scale Justification: By the central limit theorem (CLT), if the net gain

is a sum of i.i.d. random variables (e.g., individual cycle gains), the probability dis-

tribution of the net gain will approach a normal distribution16 as the number of

elements in the sum increases. Therefore, it may be reasonable (e.g., consider G̃N as

N →∞) to assume that net gains are normally distributed or at least location-scale

with location-scale invariant skewness. In this case, the behavior that maximizes

Equation (3.4) will certainly maximize the probability of success.

Analogous Results from Economics: Stephens and Krebs [60] call this the z-

score model ; however, it is well-known in economics that this method was initially

developed by Sharpe [57] for application to optimal portfolio selection. Sharpe calls

Equation (3.4) a reward-to-variability ratio17. While economists realize that return

distributions need not be normally distributed (e.g., symmetric about the mean) for

the reward-to-variability ratio to minimize risk, Stephens and Krebs [60] depend on

normality to justify their claims [60, p. 134]. Assuming normality of returns may

be far too restrictive. In fact, it is desirable that returns are skewed so that the

mass is concentrated on higher gains (i.e., not symmetric and therefore not normal).

Therefore, by depending on consistent skewness rather than symmetry, the economic

argument of reward-to-variability maximization is not only more general but also

more convincing than the argument of Stephens and Krebs.

16A normal or Gaussian random variable X with mean µ and standard deviation σ has (Lebesgue)
probability density fX(x) = 1/(σ

√
2π) exp(−(x−µ)2/(2σ2)). Normal random variables are location-

scale with location µ and scale σ and are symmetric about their mean (i.e., they have zero skewness).
17This is also known as the Sharpe ratio, which is named after the Nobel laureate who developed

it.
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Links to Risk-Sensitive Dynamic Optimization: An ex post version of the

reward-to-variability ratio is described by Sharpe [58]18, which is typically used for

measuring past performance. However, there may some opportunity to use this ex

post ratio for dynamic optimization to derive an optimal control similar to the bang-

bang19 control described by Stephens and Krebs [60] and McNamara [39] and based

on the z-score model.

Graphical Interpretation of Risk Minimization

Again, consider an agent described by the model in Chapter 2 with tasks that

are patchily distributed. Assume that there is a single task type and no search or

processing costs (i.e., n = 1, cs = c1 = 0, p1 = 1, and τ1 ∈ R≥0), but assume that the

agent must acquire a net gain of G̃T in T̃ time. Stephens and Charnov [59] use this

scenario to illustrate reward-to-variability maximization, as shown in Figure 3.2. The

curve shows the (µ̃, σ̃) combinations that result from each choice of processing time

τ1, where processing times increase in a counter-clockwise direction. Because the gain

threshold is so high, the optimal processing time, denoted t∗, is biased toward a higher-

variance distribution of outcomes. In other words, the negative energy budget forces

the agent to take more risks to maximize the probability of success. In Section 3.3.2,

we demonstrate how this graphical solution can be used to gain insight into the most

general case of the model from Chapter 220.

18Sharpe [58] also discusses other related ratios which may have applicability to stochastic opti-
mization of static behavior.

19A bang-bang control switches an actuator from one extreme to the other. In this context, the
variance at each small time period could be chosen by the agent to be either its lowest value or its
highest value.

20Again, while our solution will not be in terms of the statistics used in classical OFT, it can easily
be extended with little more than a change of notation. Also, to maintain tractability, we assume
Equations (2.35)–(2.38).

47



ta < tb < t∗ < T̃

ρ̃ , µ̃−G̃T
σ̃

♦∗ , max {♦}

σ̃

µ̃

ρ̃∗
G̃T

t
a

tb

t∗

σ̃∗

µ̃∗

Figure 3.2: Risk sensitivity in classical OFT. Over a time period of length T̃ , µ̃ is
the expected net gain, σ̃ is the standard deviation of the net gain, and G̃T is an
average net gain success threshold. The curve shows (µ̃, σ̃) combinations for each
average processing time, and ta and tb are examples of average processing times.
The optimal average processing time is denoted t∗ and the corresponding maximal
reward-to-variability ratio is denoted by ρ̃∗ and shown as the slope of a tangent line.

3.2.3 Criticisms of the OFT Approach

Despite its successes in making qualitative predictions that agree with empirical

data, rate maximization of the classical OFT approach is often criticized. For exam-

ple, Nonacs [43] tabulates 19 cases of foragers being observed to process tasks longer

than predicted by rate maximization, which shows that observations tend to deviate

only in one direction. Nonacs concludes that “something fundamental is missing” [43,

p. 71] from the classical OFT approach. However, as we discussed, rate maximiza-

tion exerts an upward pressure on time when energy budgets are negative. Thus,

the deficiency may not be in classical OFT but in gain models that do not prop-

erly include negative cases21. Additionally, the risk-sensitive analysis of Stephens and

21A generalization of this suggestion is given in Section 3.3.2.

48



Charnov [59] also explains this upward pressure on time for similar reasons. However,

this analysis receives significantly less attention than the rate maximization approach

even though analogous risk-sensitive methods are used with great success in other

fields, like MPT.

Alternate approaches choose to abandon the classical OFT agent model [e.g.,

4, 5, 12, 23, 26, 27, 52, 61]; these approaches study risk aversion, satisficing22, heuris-

tic rules, and even propose fitting empirical data directly without any functional

justification for the resulting behavioral rules. We value the generality and intuitive

appeal of the classical OFT approach. Additionally, even though it may be debatable

whether it can be used for evolutionary analysis in biology, optimization has natural

applications in engineering. Therefore, we use our generalized agent model and build

optimization objectives inspired by both classical OFT and its critics; these objectives

should have applicability to engineering and may answer some of the questions about

the shortfalls of the predictive power of classical OFT.

3.3 Generalized Optimization of Solitary Agent Behavior

Here, we discuss optimization criteria that may have utility in both engineering

and biology. As discussed in Section 3.2, the analysis of asymptotic behaviors may be

justifiable in evolutionary analysis. However, in engineering applications, it may be

more appropriate to focus on the case where an agent’s finite lifetime is determined

entirely by a set number of tasks the agent must complete. Also, because design takes

the place of natural selection, we need to explore different optimization objectives.

Therefore, in this section, we use our generalized solitary agent model and insights

22Satisficing describes a behavior that is suboptimal but achieves some minimum gain (i.e., “sur-
vival of the more fit over the less fit, not necessarily of the most fit” [12, p. 640]).
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from both OFT and MPT to generate new optimization objectives that may be

applicable to both biology and engineering. We discuss our approach to handling

finite lifetimes in Section 3.3.1. In Section 3.3.2, we present functions that, like

classical OFT, use rates to trade off between multiple optimization objectives. In

Section 3.3.3, we present generalized Pareto optimal combinations of optimization

objectives that allow a design to tune the relative importance of the objectives. Note

that when we discuss standard deviation in variance, we assume Equations (2.35)–

(2.38) for simplicity.

Some of the objectives that we define still operate on the sliding scale of behaviors

described by Schoener [55]. The primary justification in classical OFT for using the

long-term rate of gain discussed in Section 3.2.1 is that it agrees with Schoener and

makes predictions that agree qualitatively with empirical evidence [16, 49, 60]. How-

ever, some of our alternative objectives also agree with Schoener and have qualitiative

predictions similar to those from classical OFT. Therefore, these criteria seem as well-

suited for biological application as the long-term rate of gain. In fact, as discussed

in Section 3.3.2, the cases where our approaches yield different predictions than the

classical OFT approach may be interesting and help explain some of the empirical

inconsistencies with the long-term rate of gain approach [e.g., 4, 23, 43].

3.3.1 Finite Task Processing

One disadvantage of studying behavior that is optimal with respect to the long-

term rate of gain is the necessity of justifying the use of infinite-time (i.e., infinite-

cycle) approximation. A true finite-time optimization approach is desirable. There

are several dynamic programming approaches to time-limited agents [e.g., 18, 24, 34,
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66] where behaviors are based on state. While this state-based approach provides

can be better for the analysis animal behavior, it sometimes provides less intuition

and is more difficult to implement on-line in an engineered agent that may have

very limited computational abilities. Additionally, assuming that the time horizon is

known or even fixed may be unrealistic. Thus, an approach that combines elements

of both the infinite-time approach and the time-limited approach could be useful.

Rather than fixing the time horizon, we fix the number of tasks processed. This

is useful for modeling, for example, a situation where an agent expends a limited

resource on each processed task. Therefore, while the total searching and processing

time is finite and unknown (i.e., random), the total number of tasks to process is

fixed. So, take Np ∈ N to be a fixed number of tasks completed by an agent. Our

objective functions are based on statistics from our modeling approach. Of course,

these statistics take the total number of tasks Np as a parameter. Therefore, it

makes sense that behaviors for a small number of total tasks may vary greatly from

behaviors for a large number of tasks. However, in all cases behaviors will not be based

on state. In particular, the behavior for the first task processed will be consistent

with the behavior for the last task processed. This allows for the construction of

behaviors that can be implemented on very simple engineered agents.

3.3.2 Tradeoffs as Ratios

Ratios are unique in their ability to apply pressure on one objective conditioned on

the sign of another objective. However, the derivation of the expectation of ratios of

random variables is not trivial and often requires high-order statistics of the random

variables. Despite the drawbacks, we explore some ratios of statistics here that may
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be useful when there are no other easy ways to apply the appropriate pressures for

optimization. A more general method of multiobjective optimization is explored in

Section 3.3.3.

For example, classical OFT studies the optimization objective E(G̃1)/E(T̃1) be-

cause it is the limiting expression of E(G̃(t))/t as t → ∞ and maximization of the

long-term rate of gain is desirable. The analogous expression with our assumption

of a finite number of tasks processed is E(GNp
/TN

p
), but this expectation has poor

analytical tractability. Although not ideal, maximization of E(G1)/E(T1) provides

similar pressures on behaviors and has a relatively simple analytical structure. There-

fore, it is reasonable to study behaviors that are optimal with respect to this latter

objective.

Rate Maximization with Gain Threshold

Consider an agent that must achieve an expected net gain of at least GT after

Np tasks processed but must also achieve its goal in as little time as possible. This

problem has aspects in common with both rate maximization and risk sensitivity.

Therefore, we consider the objective function

E(GNp
)−GT

E(TNp)
(3.5)

or, equivalently,

E(G1)− GT

Np

E(T1)
(3.6)

So, the goal of the agent is to maximize its expected excess net gain in as little

expected time possible. This may be considered a generalization of the long-term

rate of gain optimization used in classical OFT.
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(a) Per-Cycle Perspective

τ p
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Np + cs

λp
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(gp − cp)∗

(τ p)
∗−1

λp

(b) Graphical Interpretation

Figure 3.3: Rate maximization. Curves show the Pareto frontiers for maximizing
net gain mean and maximizing or minimizing total time. GT denotes the net gain
survival threshold. γ∗ denotes the maximal rate, and the solutions that achieve this
rate are shown as large dots at points of tangency with a line of slope γ∗. The dotted
arrow in (b) shows how the figure changes as with cs and λp. It is not necessary that
|µ∗| <∞ and (τ p + 1/λp)∗ <∞.

A graphical solution to this problem is shown in Figure 3.3. This graphical ap-

proach is similar to the time-constrained approach of Rapport [51] that is described

above. The curve shows the set of all Pareto efficient solutions for maximizing gain

and both maximizing or minimizing time23. In Figure 3.3(b), the axes are shifted

23That is, points on the curve represent the highest and lowest expected total times possible for
a given expected net gain.
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to highlight the impact of parameter changes on the solution24. Figure 3.1 was gen-

erated in an identical way; however, the single gain curve g1(τ1) is replaced with a

curve representing the Pareto-efficient-average-processing-gain curve. This graphical

interpretation of rate maximization applies to any case rather than just the single

type patch case25. Additionally, search and processing costs are shown. In fact, when

GT = 0, it is clear that the cost of searching plays the same role as a gain success

threshold. The line whose slope is the rate may be viewed as pivoting at the point

(−1/λp, GT/Np + cs/λp), and so this may be called the threshold pivot point.

For this particular gp and τ p, several observations can be made.

Cycle Lifetime and Gain Threshold: The per-cycle net gain threshold GT/Np de-

pends upon the number of lifetime cycles Np. Therefore, the length of lifetime

has an impact on the gain budget and therefore the optimal strategy.

Negative Gain Budgets: Whenever the expected gain is less than the gain success

threshold, the average time spent processing tasks (which the agent can control

through both preference probability and processing time) will increase. Graph-

ically, whenever GT/Np + cs/λp > (gp − cp)∗, an increase in GT will bring an

increase in the τ p solution. Therefore, rate maximization in classical OFT may

predict low processing times compared to observations because costs or required

energy thresholds are being neglected.

24The encounter rate λp may only be considered to be an environmental parameter if, for all
i ∈ {1, 2, . . . , n}, pi is not free for the agent to choose. The analogous graphical interpretation of
results on classical OFT statistics does not have this constraint. However, in both cases the shape
of the Pareto frontier curve will change with changes in the overall encounter rate if the individual
task type encounter rates are not also scaled by the same factor.

25Recall that gp = g1 and τp = τ1 for the n = 1 (and p1 = 1) case.
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Sunk Cost Effect and Concorde Fallacy: Arkes and Ayton [3] review both the sunk

cost effect and the Concorde fallacy, which are well-known in economics and

biology. These describe the same behavior, except the former is typically ap-

plied to humans and the latter is typically applied to animals. Agents are said

to manifest this behavior when showing a “greater tendency to continue an en-

deavor once an investment in” gain has been made [3, p. 591]. In other words,

an agent will continue to process tasks evidently because of the cost of prior

processing. Arkes and Ayton suggest that this is due to the use of an ordinarily

adaptive heuristic rule; however, we suggest that rate maximization may also

explain this effect. Consider the situation shown in Figure 3.3(b), but replace

the strictly positive (gp − cp)-τ p curve with a version of itself that has been

mirrored around the τ p-axis. In this case, the optimal average processing time

is (τ p)∗. That is, it is better to face a negative energy budget after a long period

of time rather than facing a negative energy budget after a short period of time,

even though the later negative energy budget is worse (i.e., it may be better to

be short in gain after much effort than being short in gain after no effort).

Therefore, rate maximization explains some effects that may otherwise be considered

to be irrational.

Efficiency

Now, take an agent that must achieve an expected gross gain of at least GT
g after

Np tasks processed but must achieve its goal while accumulating as little cost as

possible. We consider the objective function

E(GNp
) + E(CNp

)−GT
g

E(CNp)
(3.7)
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(b) Graphical Interpretation

Figure 3.4: Efficiency maximization. Curves show Pareto frontiers for maximizing
gross gain mean and minimizing total cost. GT

g denotes the gross gain survival thresh-
old. ε∗ denotes the maximal efficiency, and the solutions that achieve this efficiency
are shown as large dots at points of tangency with a line of slope ε∗. The dotted
arrow in (b) shows how the figure changes as with cs and λp. It is not necessary that
|(gp)∗| <∞ and |(cp + cs/λp)∗| <∞.

or, equivalently,

E(G1) + E(C1)−
GTg
Np

E(C1)
(3.8)

So, the goal of the agent is to maximize its expected excess gross gain while also

accumulating as little cost as possible. This is a notion of the agent’s efficiency (i.e.,

maximal benefit-to-cost ratio). While there is no direct pressure on time minimiza-

tion in this objective, all costs in the model depend linearly on time. Therefore,

minimization of cost indirectly has a time minimization effect as well.

A graphical solution to this problem is shown in Figure 3.4. Here, the curve shows
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the set of all Pareto efficient solutions for maximizing gross gain and both maximizing

or minimizing cost26. In Figure 3.4(b), the axes are shifted to highlight the impact

of parameter changes on the solution27. The line whose slope is the efficiency may

be viewed as pivoting at the point (−cs/λp, GT
g /N

p), and so this may be called the

threshold pivot point.

For this particular gp and cp, several observations can be made.

Cycle Lifetime and Gain Threshold: As with rate maximization, the per-cycle gross

gain threshold GT
g /N

p depends upon the number of lifetime cycles Np. There-

fore, the length of lifetime has an impact on the gain budget and the optimal

strategy.

Negative Gain Budgets: Assuming the gain threshold is high, the optimal behavior

moves toward has a higher cost and a lesser gross gain as the gross gain threshold

is increased. In other words, the number of points lost per unit cost (i.e., the

loss efficiency) is actually lower at a higher cost.

Negative Search Costs: Assume that cs < 0 and GT
g ≤ 0. In this case, the optimal

solution is the one such that −cs/λ = cp. In other words, when facing a positive

energy budget and a search gain, the most efficient solution is the one where

search gains are equal to processing costs. A similar result holds for negative

average search costs. Essentially, whenever the gain threshold pivot point is

26That is, points on the curve represent the highest and lowest expected cost possible for a given
expected gross gain.

27As with the graphical interpretation of rate maximization, the effects of parameter changes are
simpler to explore using classical OFT statistics because the overall encounter rate is not influenced
by the preference probabilities, which are often considered to be decision variables that describe
agent behavior.
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below (or encircled by) the Pareto frontiers, the optimal solution will be the

one that makes E(C1) = 0.

Sunk Cost Effect and Concorde Fallacy: Efficiency maximization provides an expla-

nation for the sunk cost effect and the Concorde fallacy similar to the explana-

tion for rate maximization. If the gp-cp curve in Figure 3.4(b) is mirrored about

the cp-axis, the resulting optimal cost will be (cp)∗. That is, processing cost is

maximized in this case. Roughly, it is “better” to have a negative gain budget

at high cost than low cost.

As with rate maximization, an analysis of this optimization objective suggests expla-

nations for behaviors that might normally be considered irrational.

Risk-Sensitivity: Reward-to-Variability Ratios

As discussed, Sharpe [57] introduces an index called the reward-to-variability ra-

tio28, a measure of future performance that balances expected return with standard

deviation of return. When returns are location-scale distributed with identical skew-

ness for each location-scale choice (e.g., normally distributed), maximization of this

index is identical to minimization of risk of return shortfall.

Let GT represent a (deterministic) net gain threshold of success for the Np cycles

in an agent’s lifetime. In our context29, the reward-to-variability ratio is expressed

by

E(GNp
)−GT

std(GNp)
or, equivalently,

√
Np

E(G1)− GT

Np

std(G1)

That is, this is a ratio of excess returns to the standard deviation of those returns.

28Again, this is often called the Sharpe ratio by those other than Sharpe.
29For simplicity, we assume Equations (2.35)–(2.38).
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A graphical solution to this problem is shown in Figure 3.5. The curve represents

the Pareto frontiers for maximizing expected net gain and minimizing or maximizing

net gain standard deviation. Notice that the shape of the curve shown in Figure 3.5(a)

differs slightly from the shape of the curve in Figure 3.5(b) due to different scaling of

the axes. Even when λp may be considered a parameter of the environment (i.e., not a

function of decision variables), the shape of the Pareto frontier curve is still dependent

upon it. Therefore, the graphical interpretation of maximization in Figure 3.5(c)

requires horizontally squeezing or stretching the curve with changes in λp.

For this particular gp and cp, several observations can be made.

Cycle Lifetime and Gain Threshold: Similarly as with rate and efficiency maximiza-

tion, the per-cycle gross gain threshold GT/Np depends upon the number of

lifetime cycles Np. Therefore, the length of lifetime has an impact on the gain

budget and therefore the optimal strategy.

Negative Gain Budgets: Assuming the gain threshold is high, the optimal behavior

moves toward has a higher standard deviation and a lesser net gain as the

net gain threshold is increased. In other words, the number of points lost per

unit standard deviation is actually lower at a higher standard deviation. Put

another way, additional uncertainty in rewards is less costly because it comes

with a higher probability that returns will be above the gain threshold.

As with rate and efficiency maximization, an analysis of this optimization objective

suggests explanations for behaviors that might normally be considered irrational.
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(c) Graphical Interpretation

Figure 3.5: Reward-to-variability maximization. Curves show Pareto frontiers for
maximizing mean net gain and minimizing net gain scale. GT denotes the net gain
survival threshold. ρ∗ denotes the maximal per-cycle reward-to-variability ratio, and
the solutions that achieve this ratio are shown as large dots at points of tangency
with a line of slope ρ∗. The dotted arrows in (c) show how the figure changes as
|cs|/λp increases. It is not necessary that |µ∗| <∞ and σ∗ <∞.
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Reward-to-Variance Ratios

Optimization of portfolio performance based entirely on expectation and variance

was originally developed by Markowitz [36] and Tobin [62]. Sharpe [57] makes the

natural substitution of standard deviation for variance in the definition of the reward-

to-variability ratio. While this substitution allows maximization of the performance

index to have a risk minimization interpretation, it makes analytical derivation of the

optimal behavior difficult. To compensate, we introduce a reward-to-variance ratio

that is motivated by the reward-to-variability ratio but provides greater analytical

tractability.

Let GT represent a (deterministic) net gain threshold of success for the Np cycles

in an agent’s lifetime. In our context30, the reward-to-variance ratio is expressed by

E(GNp
)−GT

var(GNp)
or, equivalently, NpE(G1)− GT

Np

var(G1)

That is, this is a ratio of excess returns to the variance of those returns.

A graphical solution to this problem is shown in Figure 3.6. The curve represents

the Pareto frontiers for maximizing expected net gain and minimizing or maximizing

net gain variance. Notice that the shape of the the curve shown in Figure 3.6(a)

is identical to the shape of the curve in Figure 3.6(b), which relates to the ana-

lytical tractability gained by using the reward-to-variance ratio over the reward-to-

variability ratio. Observations made about the reward-to-variability ratio also hold

for the reward-to-variance ratio, and so we omit a discussion of them here.

30For simplicity, we assume Equations (2.35)–(2.38).
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(c) Graphical Interpretation

Figure 3.6: Reward-to-variance maximization. Curves show Pareto frontiers for max-
imizing net gain mean and minimizing net gain variance. GT denotes the net gain
survival threshold. η∗ denotes the maximal reward-to-variance ratio, and the solu-
tions that achieve this ratio are shown as large dots at points of tangency with a line
of slope η∗. The dotted parabolic arrow in (c) shows how the figure changes as |cs|/λp
increases. It is not necessary that |µ∗| <∞ and (σ2)∗ <∞.
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3.3.3 Generalized Pareto Tradeoffs

As discussed, maximization of a rate has the ability to choose solutions that are

Pareto efficient with respect to maximization of one objective and maximization or

minimization of another objective, conditioned on the sign of the first objective. The

particular Pareto efficient solution chosen depends on the shapes of the optimization

functions. In other words, the relative importance of maximizing one objective and

minimizing another objective is allowed to vary. Therefore, maximization of a rate is

equivalent to picking a particular relative importance.

In some cases, it may be useful to let the relative importance of maximization of

one objective and minimization of a different objective be a parameter of the environ-

ment. For example, for objectives A and B and weight w ∈ R, the maximization of

A− wB produces a Pareto efficient solution to maximization of A and minimization

of B, given that w is the relative importance of minimizing B over maximizing A. If

w < 0, then |w| represents the relative importance of maximizing B over maximizing

A. Maximization of A−wB is sufficient but not necessary for a solution to be Pareto

efficient with respect to objectives A and B; therefore, unless A and B are convex

functions, there may exist additional Pareto efficient solutions that are not accessible

by this method. Either way, collecting solutions to this maximization problem for all

w ∈ R is one way of generating a Pareto efficient set.

Therefore, here we recast the tradeoffs from Section 3.3.2 as optimization problems

of relative importance. Keeping in mind that maximization of A−wB is a sufficient

but not necessary condition for Pareto efficient solutions, this process can be viewed

as picking a particular point on the curves shown in Figures 3.3–3.6.
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Gain and Time

Take some weight w ∈ R that represents the relative importance of decreasing

total time over increasing net gain (i.e., if w < 0, then |w| is the relative importance

of increasing total time over increasing total net gain). Solutions that maximize

E(G1)− wE(T1) (3.9)

will be Pareto efficient with respect to these two objectives. If all of the solutions for

all w ∈ R are collected, the result will be a curve like the one shown in Figure 3.3.

This is analogous to optimizing E(G̃1)−wE(T̃1) in a classical OFT context. Schoener

[55] considered net gain maximization and time minimization as two extremes on

a continuum of behaviors that would maximize reproductive success in a certain

environment. If w ∈ R≥0, then this problem captures this idea, where w picks a

particular Pareto efficient solution for a certain environment. As discussed by Houston

and McNamara [24], when w is set to the maximum long-term rate of gain (i.e., the

maximum value of E(G1)/E(T1)), the behavior that maximizes Equation (3.9) will

also be the behavior that maximizes the long-term rate of gain.

Efficiency

Take some weight w ∈ R that represents the relative importance of decreasing

total cost over increasing gross gain (i.e., if w < 0, then |w| is the relative importance

of increasing total cost over increasing total net gain). Solutions that maximize

E(G1 + C1)− wE(C1) or, equivalently, E(G1) + (1− w) E(C1) (3.10)

will be Pareto efficient with respect to these two objectives. If all of the solutions for

all w ∈ R are collected, the result will be a curve like the one shown in Figure 3.4.
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Risk-Sensitivity: Mean and Standard Deviation

Take some weight w ∈ R that represents the relative importance of decreasing net

gain standard deviation31 over increasing expected net gain (i.e., if w < 0, then |w|

is the relative importance of increasing net gain standard deviation over increasing

expected net gain). Solutions that maximize

E(GNp

)− w std(GNp

) or, equivalently, E(G1)−
w√
Np

std(G1) (3.11)

will be Pareto efficient with respect to these two objectives. If all of the solutions for

all w ∈ R are collected, the result will be a curve like the one shown in Figure 3.5.

Risk-Sensitivity: Mean, Variance, and Expected Utility

The analytical tractability of Equation (3.11) can be low. However, substituting

variance for standard deviation achieves a similar goal while allowing for a simpler

analysis. That is, take some weight w ∈ R that represents the relative importance

of decreasing net gain variance over increasing expected net gain (i.e., if w < 0, then

|w| is the relative importance of increasing net gain variance over increasing expected

net gain). Solutions that maximize

E(GNp

)− w var(GNp

) or, equivalently, E(G1)− w var(G1) (3.12)

will be Pareto efficient with respect to these two objectives. If all of the solutions for

all w ∈ R are collected, the result will be a curve like the one shown in Figure 3.6.

This approach was suggested by Real [52] as a way of applying the mean-variance

methods of Markowitz [36] and Tobin [62] to biology. Real calls this variance dis-

counting. The parameter w reflects a shape parameter of the agent’s utility function32.

31Again, for simplicity, we assume Equations (2.35)–(2.38).
32A utility function quantifies the preferences of an agent. For example, a utility function shaped

one way may indicate that an agent is risk prone whereas a utility function shaped another way
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Real uses an approximation of a general utility function to argue that maximizing

Equation (3.12) leads to maximal expected utility. Stephens and Krebs [60] make this

argument exact by using an approach of Caraco [11] and some assumptions about the

shape of the utility function and the distribution of returns. In either case, there

must be some justification for the choice of w; information needs to be known about

the shape of the agent’s utility function. In an engineering context, this means that

w is a parameter of a utility function that captures the design preferences. The op-

timization of Equation (3.12) should on average lead to the most preferable outcome

with respect to this utility function33.

3.3.4 Constraints

In Sections 3.3.2 and 3.3.3, multiple optimization objectives are traded off in a

way to combine elements of both. In order to introduce threshold effects, the op-

timization problems are ultimately formulated in terms of excess. These thresholds

could be made more strict by acting on the means of the distributions rather than

on the outcomes. Thus, for some threshold X̂, instead of maximizing X − X̂, we can

maximize X subject to the constraint that E(X) ≥ X̂. These type of constraints

can be viewed as drawing horizontal and vertical boundaries on the Pareto frontiers

in Figures 3.3–3.6. The optimal solution remains Pareto efficient with respect to

may indicate that an agent is risk avoiding. Economists conventionally assumed that agents make
decisions that maximize future expected utility. The foundations of modern utility theory are due to
von Neumann and Morgenstern [65]; these results are summarized by Marschak [38]. Utility theory
will be discussed further in Section 3.4.2.

33The ratio-based risk-sensitivity methods in Section 3.3.2 may be viewed as choosing an agent’s
utility function and therefore its preferences based on its environment. Here, the preferences are a
design variable.
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all objectives in question; however, it will be optimal with respect to one particu-

lar objective when defined over the constrained domain. Unfortunately, analytically

defining this constrained domain may be challenging.

Gain and Time

Let T be some threshold of time. Consider the objective

maximize E(GNp

) subject to E(TN
p

) ≤ T

This is identical to

maximize E(G1) subject to E(T1) ≤
T

Np

This is equivalent to drawing a vertical line at E(T1) = T/Np on Figure 3.3(a) and

choosing the point on the Pareto efficient curve to the left of that line that has the

highest E(G1). Notice that as Np increases, the feasible set of behaviors decreases,

which eventually drives down the maximum possible net gain.

Similarly, let GT be some threshold of net gain. Consider the objective

minimize E(TN
p

) subject to E(GNp

) ≥ GT

This is identical to

minimize E(T1) subject to E(G1) ≥
GT

Np

This is equivalent to drawing a horizontal line at E(G1) = GT/Np on Figure 3.3(a)

and choosing the point on the Pareto efficient curve above that line that has the

lowest E(T1). Notice that as Np increases, the feasible set of behaviors increases,

which eventually deactivates the constraint34.

34Borrowing language from Lagrange multiplier methods [10], a constraint is not active when it is
satisfied with strict inequality. Constraints form boundaries around solutions; when a solution falls
on a boundary, the constraint is said to be active, which implies that the optimal solution would
most likely fall outside of the boundary if it were removed.
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Efficiency

Let CT be some cost threshold. Consider the objective

maximize E(GNp

) + E(CNp

) subject to E(CNp

) ≤ CT

This is identical to

maximize gp subject to E(C1) ≤
CT

Np

This is equivalent to drawing a vertical line at E(C1) = CT/Np on Figure 3.4(a) and

choosing the point on the Pareto efficient curve to the left of that line that has the

highest gp. Notice that as Np increases, the feasible set of behaviors decreases, which

eventually drives down the maximum possible gross gain.

Similarly, let GT
g be some threshold of gross gain. Consider the objective

minimize E(CNp

) subject to E(GNp

) + E(CNp

) ≥ GT
g

This is identical to

minimize E(C1) subject to gp ≥
GT
g

Np

This is equivalent to drawing a horizontal line at gp = GT
g /N

p on Figure 3.4(a) and

choosing the point on the Pareto efficient curve above that line that has the lowest

E(C1). Notice that as Np increases, the feasible set of behaviors increases, which

eventually deactivates the constraint.

Risk-Sensitivity: Mean, Standard Deviation, and Variance

Let σ̂2 be some threshold of net gain variance. Consider the objective

maximize E(GNp

) subject to var(GNp

) ≤ σ̂2
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This is identical to

maximize E(G1) subject to var(G1) ≤
σ̂2

Np

This is equivalent to drawing a vertical line at var(T1) = σ̂2/Np on Figure 3.6(b) and

choosing the point on the Pareto efficient curve to the left of that line that has the

highest E(G1). Notice that as Np increases, the feasible set of behaviors decreases,

which eventually drives down the maximum possible net gain.

Similarly, let GT be some threshold of net gain. Consider the objective

minimize var(GNp

) subject to E(GNp

) ≥ GT

This is identical to

minimize var(G1) subject to E(G1) ≥
GT

Np

This is equivalent to drawing a horizontal line at E(G1) = GT/Np on Figure 3.6(b)

and choosing the point on the Pareto efficient curve above that line that has the

lowest var(G1). Notice that as Np increases, the feasible set of behaviors increases,

which eventually deactivates the constraint.

Standard Deviation: The optimization objectives here could be rewritten using

standard deviation. That is, variance could be replaced with standard deviation

and any constraints on variance could be replaced with its square root. The resulting

optimization objective leads to the same solutions as the original objective. Therefore,

we omit a special standard deviation case. Often, the use of variance will improve

analytical tractability of these problems.
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3.4 Future Directions Inspired by PMPT

As with classical OFT, results here are influenced primarily by MPT, which de-

scribes a set of methods for portfolio investment and capital budgeting that follows

from the work of Markowitz [36, 37] and Tobin [62] and applications of that work

by Lintner [33], Mossin [41], and Sharpe [56]. MPT is mostly concerned with mean-

variance analysis (MVA). Proponents of MPT openly acknowledge that MVA is often

too naive [37, 56]; however, its use is justified because it is well-understood and has

low computational demands. However, modern technological and theoretical advances

may render these justifications invalid [53]. Thus, PMPT seeks to improve upon MPT

by using more advanced analytical approaches. We discuss two PMPT topics here

that may have potential applications in biology and engineering in the analysis and

design of agents.

3.4.1 Lower Partial Moments

We have used the well-known constructs of standard deviation and variance to

quantify the variability of a return. However, for a given gain threshold, minimization

of the variation below that threshold is much more important than the variation

above the threshold. That is, rather than seeking certainty in future gains, it may

be more useful to minimize the uncertainty in negative gain budgets. Therefore,

Markowitz [37] introduces the semivariance which Bawa [6] calls the lower-partial

variance (LPV). The LPV is the expected value of the squared negative deviations

of possible outcomes from some point of reference. That is, for a distribution F and

a reference point t, the LPV is defined by

LPV(t;F ) ,
∫ t

x

(t− x)2 dF (x)
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where the integral is the Lebesgue integral. Bawa and Lindenberg [9] generalize this

idea with the notion of an nth order lower-partial moment (LPM) defined by

LPMn(t;F ) ,
∫ t

x

(t− x)n dF (x)

Clearly, LPV(t;F ) = LPM2(t;F ) for all t ∈ R. These lower-partial moments35 are

generalized asymmetric notions of the familiar central moments (e.g., variance and

skewness). Rather than integrating (i.e., summing) all variations around the mean

of a distribution, the LPM integrates all variations that fall beneath some arbitrary

reference which might be viewed as a target benchmark (e.g., a net gain threshold).

This is a type of downside risk measure [22, 53].

The nth order LPM can be substituted for variance in MVA to yield a new method

of analysis that trades off greater expected returns and shortfall uncertainty without

putting any pressure on variances above return benchmarks. This is called mean-

lower-partial-moment (MLPM) analysis [7, 32]. When n = 2, this is called mean-

lower-partial-variance (MLPV) analysis [9] or mean-semivariance analysis (MSA)

[35]. When MLPV analysis is applied to normal distributions, the results are identical

to MVA36. In fact, MLPM analysis will always have results that “do at least as well”

as MVA [9]. Thus, Mao [35] claims that “the time has come to shift” from MVA to

MSA in capital budgeting. We believe that optimization based on these new downside

risk frameworks may also lead to advances in behavioral analysis and solitary agent

design.

35Bawa [7] shows that for all n ∈ N and t ∈ R, LPMn(t;F ) is a convex function of F .
36This is due to the symmetry of normal distributions.
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3.4.2 Stochastic Dominance

Investment returns (e.g., net gain) are naturally random variables. Thus, portfo-

lios or budgets (e.g., processing probability and time choices) correspond to random

variables with different probability distributions. Portfolio selection is thus a deci-

sion problem of choosing the most preferable probability distribution. von Neumann

and Morgenstern [65] characterize preferences in terms of utility functions, which

represent the effective value of certain returns to an agent. Different-shaped util-

ity functions correspond to different preferences, and rational agents37 will maximize

their expected utility. That is, if F and G are two distributions of returns and u is

an agent’s utility function, the distribution F is preferred over the distribution G if∫ ∞
−∞

u(x) dF (x)−
∫ ∞
−∞

u(x) dG(x) > 0 (3.13)

This rule can be used to pick the best distribution(s) from a set of distributions that

correspond to portfolio choices. While each of these probability distributions may be

known or at least knowable, it may not be possible to completely describe an agent’s

utility function. Therefore, it is desirable to define rules like Equation (3.13) that are

a function of only the probability distributions. Distributions that are preferable with

respect to these rules will return maximal utility for all utility functions that share

certain very general characteristics. These are known as stochastic dominance (SD)

rules. For example, as shown by Bawa [6], for any two distributions F and G, F

is preferred (i.e., results in a greater expected utility) to G for any increasing and

continuously differentiable utility function u(x) assumed to have finite values for

37von Neumann and Morgenstern [65] define what rational agent means with a number of axioms
about preference.
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finite values of x if and only if there exists some x0 ∈ R such that

F (x) ≤ G(x) for all x ∈ R and F (x0) < G(x0) (3.14)

Equation (3.14) is called first-order stochastic dominance (FSD). FSD implies that

for any return benchmark, the probability of failing to meet that benchmark will be

less with the F distribution38. This class of utility functions for FSD is very broad.

There are higher-order SD rules that apply to smaller sets of utility functions (e.g.,

risk averse utility functions). In particular, Bawa [6] shows that third-order stochastic

dominance (TSD) has an important relationship to MLPM analysis. An extensive

categorized bibliography of articles on SD and its application is given by Bawa [8],

who also briefly discusses the foundations of SD.

Biologists have recognized the validity of utility functions [e.g., 11, 52, 60]. How-

ever, the methods of SD have not been applied to compare alternative behaviors in

terms of maximal expected utility in a convincing way. That is, MVA is used to

approximate an SD analysis; however, there seems to be little recognition that this

approximation is only valid for a limited set of utility functions. Bawa [6] shows

that for a large set of utility functions, MVA meets neither necessary nor sufficient

conditions for optimality and MLPV analysis should be used instead. As design

preferences are often rational, engineering can also benefit from an SD approach. If

nothing else, SD provides a deeper understanding of the consequences of behavioral

choice by avoiding heuristic arguments and approximations. Additionally, using SD

promises to allow both engineers and behavioral ecologists to benefit not only from

classical works in economics but also from the modern-day research in the field.

38Of course, FSD provides no guarantee that a particular outcome from the G distribution will
not succeed when the outcome from the F distribution will fail. Dominance for all outcomes is the
strongest form of SD (and is rarely used).
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CHAPTER 4

FINITE-LIFETIME OPTIMIZATION RESULTS

In Chapter 3, we discussed selecting agent behavior based on the optimization

of functions that encapsulated a number of different optimization objectives. Some

of these functions traded off objectives by maximizing the ratio of one to the other.

Other functions traded off objectives by maximizing a linear combination of objec-

tives. In either case, for many of the statistics defined in Chapter 2, the resulting

functions have a special structure in common. In this chapter, we optimize a general

value function that also has this structure. We then apply these general results to

value functions of interest in our model. The general results are given in Section 4.1

and the specific results are given in Section 4.2.

4.1 Optimization of a Rational Objective Function

Before we discuss optimization of some of the functions introduced in Chapter 3,

we focus on a special general case. This general case may be applied to the optimiza-

tion functions we have introduced or be used to derive optimal behavior for other

novel valuation functions that have this structure.
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4.1.1 The Generalized Problem

Take n ∈ N task types. Most statistics defined in Chapter 2 and optimization

functions described in Chapter 3 have a special structure in common. Here, we

present a generalized optimization problem that provides solutions to a broad range

of problems in this model.

The Decision Variables and Constraints

The decision variables are preference probabilities and processing times. These

variables are constrained, so their bounds must be defined as parameters. For each i ∈

{1, 2, . . . , n}, define upper and lower preference constraint parameters p−i , p
+
i ∈ [0, 1]

and upper and lower time constraint parameters τ−i ∈ R≥0, and τ+
i ∈ R≥0. Collect

these constraint parameters into vectors p−, p+ ∈ [0, 1]n, τ− ∈ Rn
≥0, and τ+ ∈ Rn

≥0

defined by

p− ,
[
p−1 , p

−
2 , . . . , p

−
n

]>
τ− ,

[
τ−1 , τ

−
2 , . . . , τ

−
n

]>
p+ ,

[
p+

1 , p
+
2 , . . . , p

+
n

]>
τ+ ,

[
τ+
1 , τ

+
2 , . . . , τ

+
n

]>
Therefore, for an arbitrary preference probability vector p and processing time vector

τ defined so that

p ,
[
p1, p2, . . . , pn

]>
τ ,

[
τ1, τ2, . . . , τn

]>
it must be that

p−i ≤ pi ≤ p+
i and τ−i ≤ τi ≤ τ+

i

for all i ∈ {1, 2, . . . , n}.

75



Generalized Advantage, Disadvantage, and Objective

For each i ∈ {1, 2, . . . , n}, define the generalized task advantage function ai : R≥0∩

[τ−i , τ
+
i ] 7→ R and the generalized task disadvantage function di : R≥0∩[τ−i , τ

+
i ] 7→ R to

be continuously differentiable functions. Also define the environment advantage a ∈ R

and disadvantage d ∈ R. Therefore, the total advantage A and total disadvantage D

are defined by

A(p, τ) , a+
n∑
i=1

piai(τi) D(p, τ) , d+
n∑
i=1

pidi(τi)

where p ∈ [0, 1]n and τ ∈ Rn
≥0 are arbitrary preference probability and processing

time vectors. Therefore, the generalized objective J , the advantage-to-disadvantage

ratio, is defined by J(p, τ) , A(p, τ)/D(p, τ).

Notation

Take i, j ∈ {1, 2, . . . , n}. For the advantage ai and disadvantage di, use the nota-

tion

a′(τi) ,
d

d τi
a(τi) a′′(τi) ,

d2

d τ 2
i

a(τi)

d′(τi) ,
d

d τi
d(τi) d′′(τi) ,

d2

d τ 2
i

d(τi)

to represent the first and second derivatives of each function evaluated at the point

τi.

4.1.2 The Optimization Procedure

The goal is to choose preference probabilities and processing times to (locally)

maximize J . This can be formulated as the constrained minimization problem

minimize −J

subject to −τi ≤ τ−i , τi ≤ τ+
i , −pi ≤ p−i , pi ≤ p+

i for all i ∈ {1, . . . , n}
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with 4n inequality constraints. This problem can be solved using Lagrange multiplier

theory [10]. Define the Lagrangian L by

L , −J − µ>−(p− p−) + µ>+(p− p+)− ν>−(τ − τ−) + ν>+(τ − τ+)

where µ−, µ+, ν−, ν+ ∈ Rn
≥0 are vectors of Lagrange multipliers, denoted

µ− ,
[
µ1− µ2− . . . µn−

]>
µ+ ,

[
µ1+ µ2+ . . . µn+

]>
ν− ,

[
ν1− ν2− . . . νn−

]>
ν+ ,

[
ν1+ ν2+ . . . νn+

]>
For ease of notation, we use the symbol m∗ to represent a collection of one of

each of these four Lagrange multiplier vectors. That is, m∗ ∈ (Rn
≥0)

4 with m∗ ,

(µ∗−, µ
∗
+, ν

∗
−, ν

∗
+). Next, denote the feasible set F of decision variables by

F ,
{

(p, τ) ∈ [0, 1]n × Rn
≥0 : p−i ≤ pi ≤ p+

i , τ
−
i ≤ τi ≤ τ+

i , i ∈ {1, 2, . . . , n}
}

Also, for each (p∗, τ ∗) ∈ F , define the sets of active inequality constraints1 A−p (p∗),

A+
p (p∗), A−τ (τ ∗), A+

τ (τ ∗) by

A−p (p∗) ,
{
i ∈ {1, 2, . . . , n} : p∗i = p−i

}
A−τ (τ ∗) ,

{
i ∈ {1, 2, . . . , n} : τ ∗i = τ−i

}
A+
p (p∗) ,

{
i ∈ {1, 2, . . . , n} : p∗i = p+

i

}
A+
τ (τ ∗) ,

{
i ∈ {1, 2, . . . , n} : τ ∗i = τ+

i

}
For any i ∈ {1, 2, . . . , n}, if p+

i = p−i (τ+
i = τ−i ), then the inequality Lagrange

multipliers µ+
i and µ−i (ν+

i and ν−i ) combine to form an equality Lagrange multiplier

µ+
i − µ−i ∈ R (τ+

i − τ−i ∈ R). Therefore, it is clear that all points (p, τ) ∈ F are

1An active inequality constraint is a constraint that holds only by equality. For example, the
constraint x ≥ 1 is active for x = 1 and inactive for x > 1.
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regular2. Finally, for any point (p∗, τ ∗), define the feasible variations V(p∗, τ ∗) by

V(p∗, τ ∗) ,





δp1
δp2
...
δpn
δτ1
δτ2
...
δτn


∈ R2n :

δpi = 0, i ∈ A−p (p∗) ∪ A+
p (p∗),

δτj = 0, j ∈ A−τ (τ ∗) ∪ A+
τ (τ ∗)


We also define the gradient operator ∇ and the Hessian operator ∇2 by

∇ ,
[
∂
∂p1
, ∂
∂p2
, . . . , ∂

∂pn
, ∂
∂τ1
, ∂
∂τ2
, . . . , ∂

∂τn

]>
∇2 , ∇∇>

so that we have the gradient ∇L and the Hessian ∇2L. When these are to be eval-

uated at a point (p∗, τ ∗) ∈ F with multipliers m∗ ∈ (Rn
≥0)

4, we use the notation

∇L(p∗, τ ∗,m∗) and ∇2L(p∗, τ ∗,m∗), respectively. Because the Lagrangian is a con-

tinuous function, its Hessian matrix will be symmetric.

First-Order Necessary Conditions

Assume that the point (p∗, τ ∗) ∈ F is a local maximum of the objective function.

For convenience, use the notation

J∗ , J(p∗, τ ∗) A∗ , A(p∗, τ ∗) D∗ , D(p∗, τ ∗) (4.1)

In order for J∗ to be well-defined, it must be assumed that D∗ is nonzero3. It is

necessary that there exist Lagrange multiplier vectors m∗ ∈ (Rn
≥0)

4 such that

∇L(p∗, τ ∗,m∗) = 0 (4.2)

2In this context, a regular point is a point where all active constraint gradients are linearly
independent.

3While J∗ is not defined for D∗ = 0, any case where A∗ > 0 and D∗ = 0 is certainly desirable.
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and for all i ∈ {1, 2, . . . , n},

i /∈ A−p (p∗) =⇒ µ∗i− = 0 and i ∈ A−p (p∗) =⇒ µ∗i− ≥ 0 (4.3a)

i /∈ A+
p (p∗) =⇒ µ∗i+ = 0 and i ∈ A+

p (p∗) =⇒ µ∗i+ ≥ 0 (4.3b)

i /∈ A−τ (τ ∗) =⇒ ν∗i− = 0 and i ∈ A−τ (τ ∗) =⇒ ν∗i− ≥ 0 (4.3c)

i /∈ A+
τ (τ ∗) =⇒ ν∗i+ = 0 and i ∈ A+

τ (τ ∗) =⇒ ν∗i+ ≥ 0 (4.3d)

where =⇒ denotes logical implication. That is, all inequality multipliers are non-

negative; however, multipliers associated with inactive constraints are zero. Take

j ∈ {1, 2, . . . , n}. If p−j = p+
j , then p∗j = p−j = p+

j . Similarly, if τ−j = τ ∗j , then

τ ∗j = τ−j = τ+
j . We avoid these trivial cases by assuming that p−j 6= p+

j and τ−j 6= τ+
j .

Of course, if τ+
j =∞, then it is impossible for τ ∗j = τ ∗j .

Preference Probabilities: First, consider the requirements on the preference prob-

abilities. Equation (4.2) requires that

D∗aj(τ
∗
j )− A∗dj(τ ∗j )

(D∗)2
= µ∗i+ − µ∗i−

There are three cases of interest.

p∗j ∈ (p−j , p
+
j ): By Equations (4.3a) and (4.3b), µ∗j− = µ∗j+ = 0. Therefore,

D∗aj(τ
∗
j ) = A∗dj(τ

∗
j ) (4.4a)

p∗j = p−j : By Equation (4.3a), µ∗j− ≥ 0 and µ∗j+ = 0. Therefore,

D∗aj(τ
∗
j ) ≤ A∗dj(τ

∗
j ) (4.4b)

p∗j = p+
j : By Equation (4.3b), µ∗j− = 0 and µ∗j+ ≥ 0. Therefore,

D∗aj(τ
∗
j ) ≥ A∗dj(τ

∗
j ) (4.4c)
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For the minimum constraint to be active, the partial derivative of J at the constraint

must be negative. Similarly, for the maximum constraint to be active, the partial

derivative of J at the constraint must be negative. Otherwise, the partial derivative

of J should be zero. Additionally, if the minimum and maximum constraints are

equal, there is no restriction on the partial derivative of J at that point. All of these

conditions are intuitive and can be explained graphically.

Processing Times: Next, consider the requirements on the processing times. Equa-

tion (4.2) requires that

D∗p∗ja
′
j(τ
∗
j )− A∗p∗jd′j(τ ∗j )

(D∗)2
= ν∗i+ − ν∗i−

There are three cases of interest.

τ ∗j ∈ (τ−j , τ
+
j ): By Equations (4.3c) and (4.3d), ν∗j− = ν∗j+ = 0. Therefore,

D∗p∗ja
′
j(τ
∗
j ) = A∗p∗jd

′
j(τ
∗
j ) (4.5a)

τ ∗j = τ−j : By Equation (4.3c), ν∗j− ≥ 0 and ν∗j+ = 0. Therefore,

D∗p∗ja
′
j(τ
∗
j ) ≤ A∗p∗jd

′
j(τ
∗
j ) (4.5b)

τ ∗j = τ+
j : By Equation (4.3d), ν∗j− = 0 and ν∗j+ ≥ 0. Therefore,

D∗p∗ja
′
j(τ
∗
j ) ≥ A∗p∗jd

′
j(τ
∗
j ) (4.5c)

Clearly, the same interpretation applies here as applied for the requirements on opti-

mal preference probabilities.
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Second-Order Necessary Conditions

Once more, assume that the point (p∗, τ ∗) ∈ F is a local maximum of the objective

function and use the notation in Equation (4.1). We also use the notation

J∗xy ,
∂2J

∂x∂y

∣∣∣∣
(p,τ)=(p∗,τ∗)

A∗xy ,
∂2A

∂x∂y

∣∣∣∣
(p,τ)=(p∗,τ∗)

D∗xy ,
∂2D

∂x∂y

∣∣∣∣
(p,τ)=(p∗,τ∗)

Again, D∗ must be assumed to be nonzero. We also assume that the functions ai

and di are twice continuously differentiable4 functions for all i ∈ {1, 2, . . . , n}. It is

necessary that there exist Lagrange multiplier vectors m∗ ∈ (Rn
≥0)

4 such that the

first-order necessary conditions hold and

δ>∇2L(p∗, τ ∗,m∗)δ ≥ 0 for all δ ∈ V(p∗, τ ∗)− {0} (4.6)

That is, at the point (p∗, τ ∗), the Hessian of the Lagrangian must be positive semidef-

inite over the set of feasible variations at that point. The Hessian ∇2L(p∗, τ ∗,m∗)

does not depend upon the multipliers m∗, and so it is completely characterized by

J∗pjpk , J
∗
τjτk

, and J∗pjτk for all j, k ∈ {1, 2, . . . , n}. Therefore, take j, k ∈ {1, 2, . . . , n}.

Elimination of Active Preference Probability Constraints: First, assume

that j ∈ A−p (p∗) ∪ A+
p (p∗). That is, assume that an inequality constraint on the

jth preference probability is active (i.e., p∗j = p−j or p∗j = p+
j ). In this case, for

all δ ∈ V(p∗, τ ∗), δpj = 0. Therefore, because the feasible variations along active

constraint directions are zero, J∗pjpk and J∗pjτk will have no impact on Equation (4.6).

Elimination of Active Processing Time Constraints: Next, instead assume

that j ∈ A−τ (τ ∗) ∪ A+
τ (τ ∗). That is, assume that an inequality constraint on the jth

4That is, the derivatives at each point in their domain are themselves continuously differentiable.
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processing time is active (i.e., τ ∗j = τ−j or τ ∗j = τ+
j ). In this case, for all δ ∈ V(p∗, τ ∗),

δτj = 0. Therefore, because the feasible variations along active constraint directions

are zero, J∗pkτj and J∗τjτk will have no impact on Equation (4.6).

Elimination of Off-Diagonal Terms: By the reasoning about active constraints

above, we can focus on coordinates of (p∗, τ ∗) where constraints are inactive, and so

we assume Equations (4.4a) and (4.5a). Therefore,

J∗pjpk =
D∗A∗pjpk − A

∗D∗pjpk
(D∗)2

and J∗pjτk =
D∗A∗pjτk − A

∗D∗pjτk
(D∗)2

(4.7)

and

J∗τjτk =
D∗A∗τjτk − A

∗D∗τjτk
(D∗)2

(4.8)

For the moment, we focus on the off-diagonal terms of the Hessian that correspond

to inactive constraints. First, assume that j 6= k. Clearly,

A∗pjpk = D∗pjpk = A∗τjτk = D∗τjτk = A∗pjτk = D∗pjτk = 0

Thus,

J∗pjpk = J∗τjτk = J∗pjτk = 0

Now we focus on the remaining off-diagonal terms. That is, take j = k. So,

J∗pjτj =
D∗a′j(τ

∗
j )− A∗d′j(τ ∗j )

(D∗)2

Recall that we are taking j /∈ A−p (p∗) ∪ A+
p (p∗) (i.e., the jth preference probability is

unconstrained, so p∗j ∈ (p−j , p
+
j )). Therefore, p∗j > 0 and so Equation (4.5a) implies

that a′j(τ
∗
j ) = J∗d′j(τ

∗
j ). However, D∗J∗ = A∗. Thus, by substitution, it is clear that

J∗pjτj = 0. Hence, J∗pjpk , J
∗
τjτk

, and J∗piτj have no impact on Equation (4.6) for all

i, j, k ∈ {1, 2, . . . , n} with j 6= k.
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Impact of Inactive Preference Probability Diagonals: Next, we consider the

diagonal terms of the Hessian that correspond to inactive preference probabilities.

That is, assume that j = k and p∗j ∈ (p−j , p
+
j ). The condition in Equation (4.6)

requires that J∗pjpj ≤ 0. By Equation (4.7), this means that

D∗ × 0 ≤ A∗ × 0 (4.9)

which is always true (i.e., it is always the case that 0 ≤ 0 with equality). Therefore,

this necessary condition adds no more information than Equation (4.4a).

Definiteness from Inactive Processing Time Diagonals: By the reasoning

above, the only second partial derivative that can prevent Equation (4.6) from being

true is J∗τjτj where τ ∗j ∈ (τ−j , τ
+
j ). That is, the condition in Equation (4.6) requires

that J∗τjτj ≤ 0. By Equation (4.8), this means that

D∗p∗ja
′′
j (τ
∗
j ) ≤ A∗p∗jd

′′
j (τ
∗
j ) (4.10)

If the constraint parameter p−j = 0 and the jth preference probability constraint is

active (i.e., p∗j = 0), then this condition is always true by equality. Otherwise, if

p∗j > 0, it must be that D∗a′′j (τ
∗
j ) ≤ A∗d′′j (τ

∗
j ).

Second-Order Sufficiency Conditions

Now take an arbitrary feasible point (p∗, τ ∗) ∈ F that may be a maximum of the

objective function. If there exist Lagrange multiplier vectors m∗ ∈ (Rn
≥0)

4 such that

Equation (4.2) holds and Equations (4.6) and (4.3a)–(4.3c) hold with strict inequality

, then the point must be a local maximum of the objective function. This is effectively

a statement of the local concavity of the objective function at the point (p∗, τ ∗).
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The Extreme-Preference Rule: In order for Equation (4.6) to hold with strict

inequality, Equations (4.9) and (4.10) must both hold with strict inequality. However,

this is impossible for Equation (4.9). Therefore, if there is some i ∈ {1, 2, . . . , n} with

p∗i ∈ (p−i , p
+
i ), these conditions cannot be used to show that the point is a local

maximum5. Our goal is to design strategies guaranteed to be local maxima, so these

strategies will have p∗i = p−i or p∗i = p+
i for all i ∈ {1, 2, . . . , n}. We call this the

extreme-preference rule (EPR). Stephens and Krebs [60] assume that (p−i , p
+
i ) = (0, 1)

for all i ∈ {1, 2, . . . , n}, so they call this the zero-one rule. This rule is part of a

sufficiency condition; it is not at all necessary.

Problems with Sufficiency at Zero Preference Probability: Assume there

exists some j ∈ {1, 2, . . . , n} such that p∗j = 0. Equations (4.5b), (4.5c), and (4.10)

cannot all hold with strict inequality for this p∗. In other words, strict concavity

is impossible at this point because the objective function is the same value for any

choice of τ ∗j . However, it can be shown that if these all hold when p∗j is replaced with

some arbitrarily small ε with 0 < ε < p+
j , then the point (p∗j , τ

∗
j ) is a local maximum

of the objective function. In other words, even if the function is not strictly locally

concave, under these ε-conditions it is certainly locally concave.

4.1.3 Solutions to Special Cases

Solutions to this generalized optimization problem can be difficult to find. In

fact, mere existence of solutions cannot be taken for granted. However, there are two

special cases that guarantee existence (but not uniqueness) of solutions and can be

equipped with simple methods of finding one of those solutions.

5In other words, strict concavity cannot hold at such a point.
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Constant Disadvantage Case

This case not only serves as an important example but is useful in some real cases.

It is our goal to construct a strategy (p∗, τ ∗) ∈ F that meets all sufficiency conditions

to be called a local maximum point of the objective function. This point will be a

global maximum if the objective function is concave. The point will be the unique

global maximum if the objective function is strictly concave. Assume that for all

j, k ∈ {1, 2, . . . , n},

(i) p−j = 0

(ii) aj and dj are twice continuously differentiable functions

(iii) for all τj ∈ R≥0 ∩ [τ−j , τ
+
j ] and all τk ∈ R≥0 ∩ [τ−k , τ

+
k ],

• d(τj)d ≥ 0

• dj(τj)dk(τk) > 0

(iv) either d 6= 0 or there exists some i ∈ {1, 2, . . . , n} such that p∗i > 0

(v) d′j(τj) = 0 for all τj ∈ (τ−j , τ
+
j )

(vi) if τ−j 6= τ+
j , it is the case that

(a) dj(τ
−
j )a′j(τ

−
j ) < 0 or

(b) dj(τ
+
j )a′j(τ

+
j ) > 0 or

(c) dj(τj)a
′
j(τj) = 0 with dj(τj)a

′′
j (τj) < 0 for some τj ∈ (τ−j , τ

+
j )

If these assumptions do not hold, for each j ∈ {1, 2, . . . , n}, τ−j and τ+
j may be

adjusted to surround a region where they do hold. These assumptions lead to the

following for all j ∈ {1, 2, . . . , n}.
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Well-Defined Objective Function: By (iii) and (iv), D∗ 6= 0 and D∗dj(τj) > 0.

This implies that both J∗ and aj(τj)/dj(τj) are well-defined for all choices of

τj ∈ [τ−j , τ
+
j ].

Maximum Type-Advantage-to-Type-Disadvantage Ratio Exists: By (vi), there exists

some τ ∗j ∈ [τ−j , τ
+
j ] such that there is some δj ∈ R>0 where aj(τj)/dj(τj) ≤

aj(τ
∗
j )/dj(τ

∗
j ) for all τj ∈ (τj − δj, τj + δj)∩ [τ−j , τ

+
j ]. That is, the aj/dj function

has a maximum on its domain.

Parameterized Processing Times: If τ−j = τ+
j , then (v) and (vi) are trivially met.

This case is useful when processing times are parameters of the system and not

decision variables. Stephens and Krebs [60] use the name prey model for the

case where no processing times are free decision variables (i.e., tasks are whole

items of prey that come lumped with a rigid (average) processing time).

If τ−j = τ+
j , let τ ∗j = τ−j . Otherwise, let τ ∗j be a maximum of aj/dj that is described

by (vi). Next, assume that the types are indexed so that

a1(τ
∗
1 )

d1(τ ∗1 )
>
a2(τ

∗
2 )

d2(τ ∗2 )
> · · · >

an−1(τ
∗
n−1)

dn−1(τ ∗n−1)
>
an(τ ∗n)

dn(τ ∗n)
(4.11)

Assume that for all k ∈ {0, 1, 2, . . . , n− 1},

a+
k∑
i=1

p+
i ai(τ

∗
i )

d+
k∑
i=1

p+
i di(τ

∗
i )

6=
ak+1(τ

∗
k+1)

dk+1(τ ∗k+1)

Finally, define k∗ by

k∗ , min


k ∈ {0, 1, 2, . . . , n− 1} :

a+
k∑
i=1

p+
i ai(τ

∗
i )

d+
k∑
i=1

p+
i di(τ

∗
i )

>
ak+1(τ

∗
k+1)

dk+1(τ ∗k+1)

 ∪ {n}

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and let

p∗j =

{
p+
j if j ≤ k∗

0 if j > k∗

for all j ∈ {1, 2, . . . , n}. Primarily because of assumption (vi) and the results that

D∗dj(τ
∗
j ) > 0 and d′j(τ

∗
j )′ = d′′j (τ

∗
j ) = 0 for all j ∈ {1, 2, . . . , n}, it is easy to show that

(p∗, τ ∗) meets the conditions described in Section 4.1.2 that guarantee it is a local

maximum of the objective function6.

Decreasing Advantage-to-Disadvantage Ratio

Again, it is our goal to construct a strategy (p∗, τ ∗) ∈ F that meets all sufficiency

conditions to be called a local maximum point of the objective function. However,

here we assume that the disadvantage functions are not constant with respect to

processing time. This is a generalized version of the combined prey and patch model

discussed by Stephens and Krebs [60], and so it shows the MVT concept [14, 16].

However, Stephens and Krebs make different assumptions than we do because they

depend on search costs being nil. Assume that for all j, k ∈ {1, 2, . . . , n},

(i) p−j = 0

(ii) aj and dj are twice continuously differentiable functions

(iii) for all τj ∈ R≥0 ∩ [τ−j , τ
+
j ] and all τk ∈ R≥0 ∩ [τ−k , τ

+
k ],

• d(τj)d ≥ 0

• dj(τj)dk(τk) > 0

(iv) either d 6= 0 or there exists some i ∈ {1, 2, . . . , n} such that p∗i > 0

6Because p−j = 0 for all j ∈ {1, 2, . . . , n}, this statement requires the zero preference probability
modification described at the end of Section 4.1.2.
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(v) dj(τj)d
′
j(τj) > 0 for all τj ∈ (τ−j , τ

+
j )

(vi) (aj(τj)/dj(τj))
′ < 0 for all τj ∈ (τ−j , τ

+
j )

(vii) (a′j(τj)/d
′
j(τj))

′ < 0 for all τj ∈ (τ−j , τ
+
j )

If these assumptions do not hold, for each j ∈ {1, 2, . . . , n}, τ−j and τ+
j may be

adjusted to surround a region where they do. These assumptions lead to the following

for all j ∈ {1, 2, . . . , n}.

Well-Defined Objective Function: By (iii) and (iv), D∗ 6= 0 and D∗dj(τj) > 0. This

implies that both J∗, aj(τj)/dj(τj), and a′j(τj)/d
′
j(τj) are all well-defined for all

choices of τj ∈ [τ−j , τ
+
j ].

Maximum Type-Advantage-to-Type-Disadvantage Ratio Exists: By (vi), τ−j is such

that aj(τj)/dj(τj) ≤ aj(τ
−
j )/dj(τ

−
j ) for all τj ∈ [τ−j , τ

+
j ]. That is, the aj(τj)/dj(τj)

function achieves its maximum at τj = τ−j .

Ordering of Ratios: By (vi) and (v), ak(τk)/dk(τk) > a′k(τk)/d
′
k(τk) for all τk ∈

(τ−k , τ
+
k ).

Parameterized Processing Times: If τ−j = τ+
j , then (v)–(vii) are trivially met.

Assume the types are indexed so that

a1(τ
−
1 )

d1(τ
−
1 )

>
a2(τ

−
2 )

d2(τ
−
2 )

> · · · >
an−1(τ

−
n−1)

dn−1(τ
−
n−1)

>
an(τ−n )

dn(τ−n )
(4.12)

In other words, as in the constant advantage case, order the task types by decreas-

ing maximum advantage-to-disadvantage ratio. This is the same ordering used by

Stephens and Krebs; however, because we have assumed the derivative of this ratio
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is strictly decreasing, the initial ratio will always be the maximum ratio. Next, for

all k ∈ {0, 1, . . . , n}, define τ kj so that

a′j(τ
k
j )

d′j(τ
k
j )

>

a+
k∑
i=1

p+
i ai(τ

k
i )

d+
k∑
i=1

p+
i di(τ

k
i )

for τ kj = τ+
j

or

a′j(τ
k
j )

d′j(τ
k
j )

<

a+
k∑
i=1

p+
i ai(τ

k
i )

d+
k∑
i=1

p+
i di(τ

k
i )

for τ kj = τ−j

or

a′j(τ
k
j )

d′j(τ
k
j )

=

a+
k∑
i=1

p+
i ai(τ

k
i )

d+
k∑
i=1

p+
i di(τ

k
i )

for τ kj ∈ (τ−j , τ
+
j )

By (vii), this is always possible. Unfortunately, for each k ∈ {0, 1, . . . , n}, all elements

of the set {τ kj : j = {1, 2, . . . , k}}must be determined simultaneously. This is different

from the constant disadvantage case. That is, because d′k(τj) 6= 0 for all τj ∈ [τ−j , τ
+
j ],

there is coupling among the optimal choices of processing time. It must also be

assumed that

a+
k∑
i=1

p+
i ai(τ

k
i )

d+
k∑
i=1

p+
i di(τ

k
i )

6=
ak+1(τ

−
k+1)

dk+1(τ
−
k+1)

for all k ∈ {0, 1, 2, . . . , n− 1}. Now, define k∗ by

k∗ , min


k ∈ {0, 1, 2, . . . , n− 1} :

a+
k∑
i=1

p+
i ai(τ

k
i )

d+
k∑
i=1

p+
i di(τ

k
i )

>
ak+1(τ

−
k+1)

dk+1(τ
−
k+1)

 ∪ {n}


Finally, let

τ ∗j = τ k
∗

j and p∗j =

{
p+
j if j ≤ k∗

0 if j > k∗
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for all j ∈ {1, 2, . . . , n}. Primarily because of assumptions (vi) and (vii), it is easy to

show that (p∗, τ ∗) meets the conditions described in Section 4.1.2 that guarantee it is

a local maximum of the objective function7.

4.2 Optimization of Specific Objective Functions

The optimization results given in Section 4.1 may be applied to many of the

functions introduced in Chapter 3. We consider three of them here. Unfortunately,

the reward-to-variability and reward-to-variance optimization functions do not fit

the form of Section 4.1 because the central moments used to define them involve

a great deal of cross-coupling among task-type parameters and decision variables.

Therefore, we do not consider solutions to these optimization functions. We also

do not provide solutions for the constrained optimization functions; however, we

have shown other ways to implement success thresholds that can be handled by the

methods in Section 4.1.

4.2.1 Maximization of Rate of Excess Net Point Gain

Consider the function (E(G1)−GT/Np)/E(T1) where GT ∈ R is a net gain success

threshold. Using the statistics derived in Chapter 2, this can be expressed by

E(G1)− GT

Np

E(T1)
=
gp − cp − cs

λp
− GT

Np

τ p + 1
λp

=

−cs +
n∑
i=1

piλi

(
gi(τi)− ciτi − GT

Np

)
1 +

n∑
i=1

piλiτi

Define

a , −cs aj(τj) , λj

(
gj(τj)− cjτj −

GT

Np

)
d , 1 dj(τj) , λjτj

7Because p−j = 0 for all j ∈ {1, 2, . . . , n}, this statement requires the zero preference probability
modification described at the end of Section 4.1.2.
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Using these definitions, (E(G1)−GT/Np)/E(T1) fits the form studied in Section 4.1.

4.2.2 Maximization of Discounted Net Gain

Consider the function E(G1)−wE(T1) where w ∈ R. Using the statistics derived

in Chapter 2, this can be expressed by

E(G1)−wE(T1) = gp−cp− c
s

λp
−wτ p−w 1

λp
=

−(cs + w) +
n∑
i=1

piλi(gi(τi)− ciτi − wτi)
n∑
i=1

piλi

Define

a , −(cs + w) aj(τj) , λj(gj(τj)− cjτj − wτj)

d , 0 dj(τj) , λj

Using these definitions, clearly E(G1)− wE(T1) fits the form studied in Section 4.1.

This is a constant disadvantage example. Consider fixing processing times to be

parameters so that the excess rate of gain function in Section 4.2.1 is also a constant

disadvantage example. Also take GT = 0. In this case, the resulting rate of net

gain function is nearly identical to the one studied in classical OFT. In this constant

disadvantage context (called the prey model by Stephens and Krebs [60]), indexing

by advantage-to-disadvantage ratio will often lead to the same ordering for both the

rate of net gain and the discounted net gain functions. Therefore, if observational

justification for the use of rate of point gain as an optimization objective is based

entirely on task-type ranking, then discounted net gain is an equally valid optimization

objective to consider.
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4.2.3 Maximization of Rate of Excess Efficiency

Consider the function (E(G1) + E(C1)−GT
g /N

p)/E(C1) where GT
g ∈ R is a gross

gain success threshold. Using the statistics derived in Chapter 2, this can be expressed

by

E(G1) + E(C1)−
GTg
Np

E(C1)
=
gp − GTg

Np

cp + cs

λp

=

n∑
i=1

piλi

(
gi(τi)−

GTg
Np

)
cs +

n∑
i=1

piλiciτi

Define

a , 0 aj(τj) , λj

(
gj(τj)−

GT
g

Np

)
d , cs dj(τj) , λjcjτj

Using these definitions, (E(G1) + E(C1) − GT
g /N

p)/E(C1) fits the form studied in

Section 4.1.

There are two major criticisms of optimizing efficiency [60, p. 9]. First, it ignores

the impact of time. Second, it equates behaviors that bring small gains at small costs

with behaviors that bring large gains at large costs. Together, an efficiency optimizer

can spend large amounts of time for a small gain that is insufficient for survival.

However, costs in our model are affinely related to time, so cost minimization exerts

pressure on time as well. Additionally, efficiency is defined with a success threshold

(i.e., excess efficiency), and so all behaviors that have positive efficiency also lead

to survival. Therefore, if our model can be used, efficiency maximization may be

a viable alternative to rate maximization. In a constant disadvantage context, the

efficiency advantage-to-disadvantage indexing will be very similar to the indexing in

Section 4.2.1, and so evidence for the use of rate maximization may also justify the

use of efficiency maximization.
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CHAPTER 5

CONCLUSION

With increasing demand for automation, engineering design methods must be de-

veloped that encapsulate complex high-level decision making. Automated controllers

need to perform tasks that would traditionally be carried out by cognitive agents

(e.g., human beings). So, engineering is progressively more interested in constructing

behaviors rather than just decision rules. Therefore, it makes sense that behavioral

ecology could be influential to the development of design methods in artificial intel-

ligence. This insight is the genesis of this thesis. We demonstrate how the study

of patterns of natural cognitive behavior can be used to guide the construction of

engineered agents. This novel extension of behavioral ecology can lead to new real-

izations about the natural world. As these fields have a rich history, their combination

provides for many future research directions.

5.1 Contributions to Engineering

Results from behavioral ecology can be extended to engineering design. At an

abstract level, a forager with a behavior favored by natural selection due to its energy-

time balance is no different from a single agent with protocols that achieve a favorable
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work-resource balance. This agent model is applicable in a wide range of engineer-

ing applications. The analogy between foraging and task processing is obvious in

military applications where agents search for targets to process while also minimiz-

ing fuel cost or risk. Also consider an automated centralized temperature controller

in a large building. The controller has limited control authority and faces random

temperature disturbances. It must prioritize its efforts to achieve some desirable

temperature profile given its limited resources. Our design methods may be used to

design a strategy that efficiently manages the temperature profile of the building1.

In fact, Quijano et al. [50] have implemented an OFT-based temperature controller

prototype. Other controllers that must prioritize resource investment to achieve some

favorable outcome may be viewed in a similar way. Our model is particularly useful in

applications with Poisson encounters, as in many queueing applications. This model

could also be modified for use in other stochastic environments.

5.2 Contributions to Biology

This new engineering approach is not only inspired by classical OFT but also

provides new insights to behavioral ecology. While qualitative results can be useful

in justifying observed behavior in nature, the design of engineered behaviors requires

a strong quantitative analysis of a trusted model. Therefore, the two fields have

different priorities, and they complement each other. Biologically-inspired engineering

design leads to elegant agent behaviors and new insights into the elegance of observed

foraging behaviors in nature. In particular, the work in this thesis contributes to

biology in the following ways.

1For example, temperature perturbations away from the desired profile may be viewed as task
encounters.
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Improved Agent Model: Our solitary agent model that we discuss encapsulates the

existing foraging model used in classical OFT. However, we explicitly model

a relationship between processing time and processing cost and none of our

analysis requires that any cost is nil. We also allow for the possibility of nega-

tive search costs and gains, which expands the applicability of the model (e.g.,

negative search costs may indicate additional value accumulated while not in a

processing mode).

Combination of Rate Maximization and Risk Sensitivity: Our approach of defining

an agent lifetime in terms of a finite number of tasks yields new ways of ap-

proaching statistical optimization of the agent model. Because the agent has a

finite lifetime, thresholds of lifetime success may be added to the analysis. Suc-

cess thresholds cannot be used in classical OFT rate maximization because an

infinite lifetime is assumed, and so any threshold will have zero impact on be-

havior. Gain thresholds are considered in risk-sensitive classical OFT approach,

but the impact of environmental parameters cannot easily be explored because

the model does not provide an easy way to study finite-lifetime behavior. Be-

cause our approach is defined by a finite lifetime assumption, we can add a gain

threshold to rate maximization (i.e., we consider excess rate maximization) and

study the impact of environmental parameter changes on risk-sensitive behav-

ior. The former combines risk sensitivity and time minimization. The latter

shows not only how parameters like encounter rates and costs can modulate

risk-sensitive behavior but also how minimization of uncertainty is related to

time minimization.
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Evolutionary Justification for Efficiency Maximization: Efficiency maximization is

usually considered to be unrealistic in biology because it does not provide the

time minimization important to both risk sensitivity and rate maximization.

However, by studying efficiency with respect to our agent model, we show how

its maximization does provide time pressure (i.e., minimization of costs has a

related effect on time). This makes it an optimization objective that does not

conflict with the expected pressures of natural selection or survival in general.

Generalized MVT: By studying the maximization of a generalized rational value

function, we provide a simple method for finding behaviors that are optimal with

respect to existing objectives and objectives yet to be determined. The optimal

solutions to this generic value function show that the MVT is a specialization

of a general rule based on marginal advantage and marginal disadvantage.

These contributions are the result of a fresh perspective on well-known theoretical

research in behavioral ecology. This suggests that collaboration between engineers

and biologists has synergistic value.

5.3 Future Directions

There are several future directions for extending this work. For one, the agent

model we have described may be expanded to include the impact of recognition cost

and behavior-dependent encounter rates. Nonlinear fuel costs might also be added

to the model2. Additionally, analytical results that use variance would be valuable

when considering risk in random environments. The optimization methods also leave

2As our justifications for using efficiency maximization as an alternative for rate maximization
are based on linear costs, this modification is not trivial.
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room for improvement. As discussed, MPT and PMPT have studied nearly identical

problems in finance. Modern portfolio choice and capital budgeting research is far

more advanced than the economic literature typically cited by behavioral ecologists.

Approaching behavioral analysis and design from this updated point of view may

be valuable. Finally, it is important to engineering that biologically-inspired agent

design be tested experimentally in order to validate its utility.

5.4 The Value of Collaboration

Studying ways of combining behavioral ecology, finance, and engineering has been

enlightening and stimulating. Researchers in these fields approach similar problems

from different directions. Their collaboration can lead to unanticipated insights of

genuine value. Even if the results of this particular work fail to be successfully applied

to engineering, it is likely that starting a discussion among members of this diverse

group of fields will eventually yield mutual benefits.
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APPENDIX A

LIMITS OF MARKOV RENEWAL PROCESSES

Take a probability space (U ,Σ,Pr). Let (M(ts) : ts ∈ R≥0) be a Poisson process

from the space with rate λ ∈ R>0 and interevent time process (ΥM). Take (τM) to be

a sequence of non-negative random variables from this space where τM is independent

of ΥN for all M,N ∈ N. From these, define the random processes (TN) and (TN)

with

TN , ΥN + τN and TN ,
N∑
i=1

TN =
N∑
i=1

Υi + τi

for all N ∈ N and ζ ∈ U . Define the Markov renewal process (N(t) : t ∈ R≥0) by

N(t) , sup

{
N ∈ N :

N∑
i=1

Ti ≤ t

}

For all outcomes ζ ∈ U ,

T 2 = T1 + T2 = Υ1 + Υ2 + τ1 + τ2 = A2 +B2

where random variables A2 : U 7→ R and B2 : U 7→ R are defined by A2 , Υ1 + Υ2

and B2 , τ1 + τ2 for all ζ ∈ U . For brevity, we assume that the probability measures

associated with these two random variables are absolutely continuous with respect to

the Lebesgue measure1. The main result of this appendix holds for the general case

1By the Poisson assumption, this must be true for A2.
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as well. Because T 2 is the sum of two independent random variables, for all x ∈ R,

fT 2(x) = fA2(x) ∗ fB2(x) where the ∗ operator denotes convolution [45]. Therefore,

E

(
1

T 2

)
=

∫ ∞
−∞

1

x
(fA2(x) ∗ fB2(x)) dx

=

∫ ∞
−∞

∫ ∞
−∞

1

x
fA2(x− t)fB2(t) d t dx

=

∫ ∞
−∞

∫ ∞
−∞

1

x
fA2(x− t)fB2(t) dx d t

=

∫ ∞
−∞

fB2(t)

∫ ∞
−∞

1

y + t
fA2(y) d y d t

However, fB2 is a probability density where fB2(t) = 0 for all t < 0, and so

E

(
1

T 2

)
≤
∫ ∞
−∞

1

y
fA2(y) d y

Because (ΥM) is the interevent time process for Poisson process (M(ts) : ts ∈ R≥0),

A2 is Erlang-2 distributed2 with parameter λ. Thus, E(1/T 2) ≤ λ. So, there exists an

N ∈ N such that E(1/TN) <∞. By results of Johns and Miller [28], for all K ∈ N,

aslim
t→∞

N(t)

t
= lim

t→∞

E(N(t))

t
= aslim

N→∞

N

TN
= lim

N→∞
E

(
N

TN

)
=

K

E(TK)
=

1

E(T1)

where

1

E(T1)
=

1

E(Υ1) + E(τ1)
=

1
1
λ

+ E(τ1)

This could be called the long-term encounter rate of (N(t) : t ∈ R≥0). Now define

the process (T (t) : t ∈ R≥0) by

T (t) , TN(t) =

N(t)∑
i=1

T1

for all t ∈ R≥0. It is similarly the case that

aslim
t→∞

T (t)

t
= lim

t→∞

E(T (t))

t
= 1

2The Erlang-2 distribution is characterized by density fA2(y) = λ2y exp(−λy) for y > 0.
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LIST OF ACRONYMS1

CLT central limit theorem <46>
EPR extreme-preference rule <84>
FSD first-order stochastic dominance <73>
i.i.d. (mutually) independent and identically distributed <8>

KKT Karush-Kuhn-Tucker <36>
LPM lower-partial moment <71>
LPV lower partial variance <70>

MLPM mean-lower-partial-moment <71>
MLPV mean-lower-partial-variance <71>

MPT modern portfolio theory <33>
MSA mean-semivariance analysis <71>
MVA mean-variance analysis <70>
MVT marginal value theorem <44>
OFT optimal foraging theory <1>

PMPT post-modern portfolio theory <34>
SD stochastic dominance <72>

TSD third-order stochastic dominance <73>

1The page where the glossary entry is defined is given in angle brackets (e.g., <106>).
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LIST OF TERMS1

General Environment and Task-Type Terms
cs Average cost rate for searching (points per second) <8>
n Number of task types <8>
λi Poisson encounter rate for task type i (tasks per second) <10>
ci Average fuel cost rate for task type i (points per second per task) <10>
gi Average gross processing gain for task type i (points per task) <10>
τi Average processing time for task type i (seconds per task) <10>
pi The agent’s preference probability for task type i <10>

gi(τi) Average processing gain for task type i as function of average processing
time <11>

Classical OFT Terms
λ Merged Poisson encounter rate for all tasks (tasks per second) <14>

N(t) Number of tasks encountered after t seconds <16>
g Gross gain random variable for processing a task during one OFT Markov

renewal cycle (points) <14>
g Expected gross gain for processing a task during one OFT Markov re-

newal cycle (points) <14>
c Cost random variable for processing a task during one OFT Markov

renewal cycle (points) <14>
c Expected cost for processing a task during one OFT Markov renewal

cycle (points) <14>
τ Time random variable for processing a task during one OFT Markov

renewal cycle (seconds) <14>
τ Expected time for processing a task during one OFT Markov renewal

cycle (seconds) <14>
G̃1 Net gain from a single OFT renewal cycle (points) <15>
C̃1 Cost from a single OFT renewal cycle (points) <15>
T̃1 Length of time of a single OFT renewal cycle (seconds) <15>
G̃N Total net gain for N OFT Markov renewal cycles (points) <18>
C̃N Total cost for N OFT Markov renewal cycles (points) <18>

1The page where the glossary entry is defined is given in angle brackets (e.g., <107>).
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T̃N Total length of time for N OFT Markov renewal cycles (seconds) <17>
G̃(t) Total net gain after t seconds (i.e., G̃N(t)) (points) <18>
C̃(t) Total cost after t seconds (i.e., C̃N(t)) (points) <18>
T̃ (t) Total length of time after t seconds for all completed OFT Markov

renewal cycles (i.e., T̃N(t)) (seconds) <18>

Processing-Only Terms
λpi Poisson encounter rate with processed tasks of type i (processed tasks

per second) <22>
λp Poisson encounter rate with processed tasks of all types (processed tasks

per second) <23>
Np(t) Number of tasks processed after t seconds <25>

gp Gross gain random variable for processing a task during one processing
Markov renewal cycle (points) <23>

gp Expected gross gain for processing a task during one processing Markov
renewal cycle (points) <24>

cp Cost random variable for processing a task during one processing Markov
renewal cycle (points) <23>

cp Expected cost for processing a task during one processing Markov re-
newal cycle (points) <24>

τ p Time random variable for processing a task during one processing Markov
renewal cycle (seconds) <23>

τ p Expected time for processing a task during one processing Markov re-
newal cycle (seconds) <24>

G1 Net gain from a single processing renewal cycle (points) <24>
C1 Cost from a single processing renewal cycle (points) <24>
T1 Length of time of a single processing renewal cycle (seconds) <24>

GNp
Total net gain for N processing Markov renewal cycles (points) <26>

CNp
Total cost for N processing Markov renewal cycles (points) <26>

TN
p

Total length of time for Np processing Markov renewal cycles (sec-
onds) <26>

G(t) Total net gain after t seconds (i.e., GNp(t)) (points) <26>
C(t) Total cost after t seconds (i.e., CNp(t)) (points) <26>
T (t) Total length of time after t seconds for all completed processing Markov

renewal cycles (i.e., TN
p(t)) (seconds) <26>
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LIST OF SYMBOLS

Document Conventions
[xx] see reference number xx in the bibliography

General Mathematics
= is equal to
, defined as
≈ is approximately equal to

< (>) strictly less (greater) than
≤ (≥) less (greater) than or equal to
x+ y sum of x and y
x× y product of x and y (also denoted xy)
−x additive inverse of x

x− y difference of x and y (i.e., x− y , x+−y)
sgn(x) sign function of x∏

product of elements of a set∑
sum of elements of a set

Numbers
N the set of the natural numbers (i.e., {1, 2, 3, . . . })
W the set of the whole numbers (i.e., {0, 1, 2, 3, . . . })
Z the set of the integers (i.e., {. . . ,−3,−2,−1, 0, 1, 2, 3, . . . })
Q the set of the rationals (i.e., ratios of integers)
R the set of the real numbers

R>0 the set of the strictly positive real numbers
R≥0 the set of the non-negative real numbers
R<0 the set of the strictly negative real numbers
R≤0 the set of the non-positive real numbers
R6=0 the set of the non-zero real numbers

R the set of the extended real numbers (i.e., R ∪ {−∞,+∞})
Rn the Euclidean n-space

Rn×m space of n-by-m real matrices
Rn×n the unitary associative real algebra

e Euler’s number (i.e., constant e ≈ 2.71828182845904523536)
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logb(x) logarithm of positive real number x in base b (i.e., blogb(x) = x)
log(x) common logarithm of positive real number x (i.e., 10log(x) = x)
ln(x) natural logarithm of positive real number x (i.e., eln(x) = x)

exp(x) exponential function (i.e., exp(x) , ex)
dxe the ceiling of real number x (i.e., the least integer not less than x)
bxc the floor of real number x (i.e., the greatest integer not greater

than x)

Sets
X a set X

{a, b, c} a set of objects a, b, and c
. . . continue the established pattern ad infinitum (e.g., the infinite set

{1, 2, 3, . . . })
{u : p} set of all elements of u such that p

{u : p, q, r} set of all elements of u such that p, q, and r
∅ the empty set (i.e., {})
∈ is an element of (i.e., set inclusion)
/∈ is not an element of (i.e., set exclusion)

⊂ (⊃) is a proper/strict subset (superset) of
⊆ (⊇) is a subset (superset) of
X = Y set X is equal to set Y (i.e., X ⊆ Y and Y ⊆ X )
X 6= Y set X is not equal to set Y
P(U) power set of set U (i.e., the set of all subsets of U)
|X | cardinality of set X⋂

intersection of many sets (compare to
∑

)⋃
union of many sets (compare to

∑
)

X ∩ Y set intersection (or meet) of sets X and Y
X ∪ Y set union (or join) of sets X and Y
X − Y difference of sets X and Y
X c complement of set X c (e.g., U − X where X ⊆ U)

(a, b) ordered pair of objects a and b (i.e., (a, b) , {{a}, {a, b}})
(x1, x2, . . . , xn) n-tuple (i.e., tuple of length n ∈ N with coordinates x1, x2,. . . ,xn

in their respective order)
X × Y (binary) Cartesian product of sets X and Y (i.e., X ×Y , {(x, y) :

x ∈ X , y ∈ Y})
X1 × · · · × Xn Cartesian product of n sets X1, . . . , Xn (i.e., X1 × · · · × Xn ,

{(x1, . . . , xn) : x1 ∈ X1, . . . , xn ∈ Xn})
X n Cartesian product of set X with itself n times (e.g., X 3 , X ×X ×

X )
[a, b] interval [a, b] , {x ∈ X : a ≤ x ≤ b}
(a, b] interval (a, b] , {x ∈ X : a < x ≤ b}
[a, b) interval [a, b) , {x ∈ X : a ≤ x < b}
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(a, b) interval (a, b) , {x ∈ X : a < x < b}

Families and Sequences
x(i) or xi or xi alternate notations for an index i on a symbol x

(xi : i ∈ I) an indexed family with index set I (also (xi)i∈I)
(x(t) : t ≥ 0) an ordered indexed family with a directed index set T where 0 ∈ T

(xα) a net (i.e., an ordered indexed family (xα : α ∈ A) with directed
index set A)

(xn) a sequence (i.e., an ordered indexed family (xn : n ∈ N) with
totally ordered index set N)

Logic
⇐⇒ logical equivalence
=⇒ logical implication

Order
inf infimum (i.e., greatest lower bound or meet)

sup supremum (i.e., lowest upper bound or join)
max maximum element
min minimum element

Functions and Real Analysis
n! factorial of n (i.e., n! = 1× 2× · · · × n with 0! = 1)

f : X 7→ Y a function f with domain X and codomain Y
lim limit (e.g., unique limit of filter base, function, net, or sequence)
→ a limit

pn → p limit of sequence (pn)
f(x)→ q limit of function f (e.g., as x→ p)
f ′(x0+) the right-hand derivative of function f at point x0

f ′(x0−) the left-hand derivative of function f at point x0

f ′(x0) the first (total) derivative of function f at point x0

f ′′(x0) the second (ordinary) derivative of function f at point x0

f ′′′(x0) the third (ordinary) derivative of function f at point x0

f (n)(x0) the nth (ordinary) derivative of function f at point x0 where n ∈
{4, 5, 6, . . . }

d f/ d t total derivative of function f at point t
d2 f/d t2 second total derivative of function f (i.e., f ′′)
d3 f/d t3 third total derivative of function f (i.e., f ′′′)
dn f/d tn nth total derivative of function f (i.e., f (n))
∂f/∂x partial derivative of function f with respect to x

∂2f/∂x∂y partial derivative of function ∂f/∂x with respect to y

Vectors and Linear Algebra
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yi the ith coordinate of vector y
x> the transpose of vector or covector x (i.e., if x is an n-vector then

x = [x1, x2, . . . , xn]>)
A> the transpose of matrix A
ei the ith elementary (or standard) basis vector
I the identity matrix

∇xf(x) the gradient vector of function f at x
∇2
xxf(x) the Hessian matrix of function f at point x

Probability and Measure Theory
B(U) the Borel algebra of set U (i.e., B(U) is the minimal a σ-algebra

containing the open sets; elements of B(U) are called Borel sets
and are subsets of U , so B(U ∈P(U)∫ b

a
f(x) dx the Lebesgue integral of function f over interval [a, b] ⊂ R with

respect to the Lebesgue measure
f ∗ g convolution of function f with function g (i.e., (f∗g)(t) ,

∫∞
−∞ f(τ)g(t−

τ) d τ)
δa(E) Dirac delta measure of set E at point a (e.g., f(0) =∫ 1

−1
f(x)δ0({x}) dx)

δ(x− p) Simplified Dirac delta measure notation (i.e., δ(x− p) , δp({x}))
Pr Probability measure

(U ,Σ,Pr) Probability space with outcomes U , σ-field of events Σ, and prob-
ability measure Pr

{X ≤ a} Measurable set induced by preimage of random variable X (i.e.,
{ζ ∈ U : X(ζ) ≤ a})

Pr(X ≤ a) Probability induced by preimage of random variableX (i.e., Pr({ζ ∈
U : X(ζ) ≤ a}))

FX(x) Cumulative distribution function for random variableX (i.e., FX(a) ,
Pr(X ≤ a))

fX(x) Probability density function for random variable X (i.e., FX(a) =∫ a
−∞ fX(x) dx)

E(X) Expectation of random variable X (i.e.,∫∞
−∞ xfX(x) dx)

E(g(X)) Expectation of function g of random variable X (i.e.,∫∞
−∞ g(x)fX(x) dx)

cov(X, Y ) Covariance of random variablesX and Y (i.e., cov(X, Y ) = E(XY )−
E(X) E(Y ))

FXY (x, y) Joint distribution function for random variables X and Y (i.e.,
FXY (a, b) , Pr(X ≤ a, Y ≤ b))

fXY (x, y) Joint density function for random variables X and Y
fY |X(y|x) Conditional density function for random variable Y given X = x
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FY |X(y|x) Conditional distribution function for random variable Y given X =
x

E(Y |X) Conditional expectation of Y given X
(N(t) : t ∈ R≥0) Random process (i.e., N(t) is a random vector for all t ∈ R>0)

Y (t)
a.s.−−→ Y Random process Y (t) converges almost surely (i.e., Pr(limt→∞ Y (t) =

Y ) = 1) to Y
aslim
t→∞

Y (t) = Y Random process Y (t) converges almost surely (i.e., with probabil-

ity 1) to Y
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INDEX1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A
AAV, see examples, applications, au-

tonomous vehicle
agent, see solitary agent model, agent
agent model, see solitary agent model
AGV, see examples, applications, au-

tonomous vehicle
applications, see examples, applications
artificial intelligence, 93
assumptions, see solitary agent model, as-

sumptions
automation, see examples, applications
autonomous air vehicles, see examples,

applications, autonomous vehicle
autonomous ground vehicles, see exam-

ples, applications, autonomous
vehicle

average, see stochasticity, statistics, ex-
pectation

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .B
bang-bang control, 47
Borel sets, see mathematics, sets, Borel

algebra

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .C
capital budgeting, see finance, capital

budgets
central limit theorem (CLT), see stochas-

ticity, central limit theorem
central moments, see stochasticity, statis-

tics, central moments

choice, see solitary agent model, choice

classical OFT, see optimal foraging the-
ory

classical optimal foraging theory, see op-
timal foraging theory

CLT, see stochasticity, central limit theo-
rem

cognition, 93

combined prey and patch model, see com-
bined task-type and processing-
length choice problem

combined task-type and processing-length
choice problem, 11, 87

compound objectives, see optimality,
multiobjective optimization

Concorde fallacy, see sunk-cost effect

constraints, see optimization constraints

contributions

biology, 94–96

engineering, 93–94

costs, see solitary agent model, costs

currency, see solitary agent model, cur-
rency

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D

dynamic optimization, 46

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .E

ecological rationality, 55, 58, 59

efficiency, see excess efficiency

EPR, see extreme-preference rule

1Notation: 114 is a definition page, and 114 is a glossary page.
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equilibrium process rate of net gain, see
equilibrium renewal process rate
of net gain

equilibrium renewal process rate of net
gain, 42–43

Erlang-2, see stochasticity, distributions,
Erlang-2

ex post performance measure, 47

examples

analytical solutions, 90–92

discounted net gain, 91

excess efficiency, 92

rate of excess net gain, 90–91

applications, 93–94

autonomous vehicle, 1, 4, 31, 94

military, 94

queueing, 94

surveillance, 31

temperature control, 94

graphical solutions

excess efficiency, 56–58

rate of excess net gain, 53–55

reward-to-variability ratio, 59

reward-to-variance ratio, 61

excess efficiency, 55–56, 56–58

graphical optimization, 56–58

expectation, see stochasticity, statistics,
expectation

expected utility, see utility theory

expected value, see stochasticity, statis-
tics, expectation

extreme-preference rule (EPR), 84, 106

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F

finance

capital budgets, 72

investment returns, 72

modern portfolio theory (MPT), 33,
106

portfolios, 72

post-modern portfolio theory
(PMPT), 34, 70–73, 106

stochastic dominance (SD), 72–73,
106

first-order (FSD), 72–73, 106

third-order (TSD), 73, 106

finite expectation, see stochasticity,
statistics, finite expectation

foraging, see optimal foraging theory

foraging model, see solitary agent model

frontier, see optimality, Pareto efficient

future directions, 70, 96–97

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G

gain, see solitary agent model, point gain

gain success threshold, 44–45, 52, 55, 58,
61

gain threshold, see gain success threshold

Gaussian distribution, see stochasticity,
distributions, normal

gross gain success threshold, 55

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I

i.i.d., see stochasticity, random variable,
i.i.d.

independent and identically distributed
(i.i.d.), see stochasticity, random
variable, i.i.d.

independent random variables, see
stochasticity, random variable, in-
dependent

investment returns, see finance, invest-
ment returns

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K

Karush-Khun-Tucker (KKT) conditions,
see optimality, KKT conditions

KKT conditions, see optimality, KKT
conditions

Kuhn-Tucker conditions, see optimality,
KKT conditions

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L

Lagrange multiplier method, see optimal-
ity, Lagrange multiplier method
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location, see stochasticity, distributions,
location-scale family

location-scale, see stochasticity, distribu-
tions, location-scale family

long-term average rate of net gain, 19, 27,
39–44

graphical optimization, 43–44

justification, 39–40

limit, 40–41

opportunity cost, 41–42

long-term rate of net gain, see long-term
average rate of net gain

lower-partial moment, see stochasticity,
statistics, lower-partial moment

lower-partial variance, see stochasticity,
statistics, lower-partial variance

LPM, see stochasticity, statistics, lower-
partial moment

LPV, see stochasticity, statistics, lower-
partial variance

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M

marginal value theorem (MVT), 44, 87,
106

Markov renewal cycle

OFT cycle, 108

Markov renewal cycles

OFT cycle, see solitary agent model,
classical analysis, OFT cycle

processing cycle, see solitary agent
model, processing-only analysis,
processing cycle

Markov renewal process, see stochasticity,
Markov renewal process

mathematics, 109–113

definition (,), 109

equality (=), 109

functions, 111

convolution (∗), 99, 112

gradient (∇), 112

Hessian (∇2), 112

integral (
∫

), 71, 112

partial derivative (∂), 111

total derivative (d), 111

functions(, 111

limit (lim or →), 111

logic, 111

equivalence (⇐⇒ ), 111

implication ( =⇒ ), 111

n-tuple, 110

numbers, 109–110

Euclidean n-space (Rn), 109

extended real numbers (R), 109

integers (Z), 109

natural numbers (N), 109

rationals (Q), 109

real negative numbers (R<0), 109

real non-negative numbers (R≥0),
109

real non-positive numbers (R≤0),
109

real non-zero numbers (R6=0), 109

real number intervals, 110–111

real numbers (R), 109

real positive numbers (R>0), 109

whole numbers (W), 109

order, 111

infimum (inf), 111

maximum (max), 111

minimum (min), 111

supremum (sup), 111

ordered pair, 110

sets, 110–111

Borel algebra (B), 112

Cartesian product (×), 110

empty set (∅), 110

exclusion (/∈), 110

power set (P), 110

set complement (c), 110

set difference (−), 110

set element (∈), 110

set intersection (∩), 110

set union (∪), 110
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subset (⊆ or ⊂), 110

superset (⊇ or ⊃), 110

vector spaces, 111–112

matrix transpose (>), 112

vector transpose (>), 112

maximal expected utility, see utility the-
ory

maximal utility, see utility theory

mean, see stochasticity, statistics, expec-
tation

mean-lower-partial-moment (MLPM)
analysis, 71

mean-lower-partial-variance analysis, 71

mean-semivariance analysis, see mean-
lower-partial-moment analysis,
see mean-lower-partial-variance
analysis

mean-variance analysis (MVA), 44–47, 70,
106

merge before split approach, 13

merged Poisson process, see stochasticity,
Poisson process, merged

MLPM, see mean-lower-partial-moment
analysis

model, see solitary agent model

model assumptions, see solitary agent
model, assumptions

model weaknesses, see solitary agent
model, weaknesses

modern portfolio theory (MPT), see fi-
nance, modern portfolio theory

moments, see stochasticity, statistics, mo-
ments

MPT, see finance, modern portfolio the-
ory

MSA, see mean-lower-partial-moment
analysis

multiobjective optimization, see optimal-
ity, multiobjective optimization

mutually independent and identically dis-
tributed (i.i.d.), see stochasticity,
random variable, i.i.d.

MVA, see mean-variance analysis

MVT, see marginal value theorem

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N

net gain success threshold, see gain suc-
cess threshold

net point gain, see solitary agent model,
net point gain

normal distribution, see stochasticity, dis-
tributions, normal

numbers, see mathematics, numbers

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .O

OFT, see optimal foraging theory

OFT cycle, see solitary agent model, clas-
sical analysis, OFT cycle

opportunity cost, see long-term average
rate of net gain, opportunity cost

optimal foraging theory, 1, 3, 5, 12–22,
27, 106

optimality

compound objectives, see optimality,
multiobjective optimization

KKT conditions, 36, 106

Lagrange multiplier method, 36, 38

multiobjective optimization, 35–36

linear combination, 36

maximin, 36

Pareto efficient, 36, 36

Pareto frontier, see optimality, Pareto
efficient

Pareto optimal, see optimality,
Pareto efficient

optimization constraints, 36–38, 66–69

encounter-rate, 37

gain and cost, 68

gain and time, 67

mean and standard deviation, 69

mean and variance, 68–69
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nutrients, 37

time, 36

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .P

Pareto efficient, see optimality, Pareto ef-
ficient

Pareto frontier, see optimality, Pareto ef-
ficient

Pareto optimal, see optimality, Pareto ef-
ficient

Pareto tradeoffs, 63–66

efficiency, 64

gain discounted by cost, 64

gain and time, 64

gain discounted by time, 64

mean and standard deviation, 65

mean discounted by standard devi-
ation, 65

mean and variance, 65–66

mean discounted by variance, 65

patch model, see task processing-length
choice problem

patch overstaying, 48

rational explanation, 54

PMPT, see finance, post-modern portfo-
lio theory

point gain, see solitary agent model, point
gain

Poisson process, see stochasticity, Poisson
process

portfolios, see finance, portfolios

post-modern portfolio theory (PMPT),
see finance, post-modern portfo-
lio theory

prey model, see task-type choice problem

probability, see stochasticity

probability measure, see stochasticity,
probability measure

probability of success, 45

probability space, see stochasticity, prob-
ability space

processing, see solitary agent model, pro-
cessing

processing cycle, see solitary agent model,
processing-only analysis, process-
ing cycle

pseudo-deterministic, see stochastic-
ity, random variable, pseudo-
deterministic

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Q

queueing, see examples, applications,
queueing

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .R

random variables, see stochasticity, ran-
dom variables

randomness, see stochasticity

rate maximization, 39–44, 52

rate of excess net gain, 52, 52–55

analytical optimization, 90–91

graphical optimization, 52–55

rational agent, see utility theory

rational objective function, 74–90

optimal solution

constant disadvantage, 85–87

decreasing advantage-to-disadvantage,
87–90

rationality, see ecological rationality

real numbers, see mathematics, numbers,
real numbers

renewal process, see stochasticity, Markov
renewal process

reward-to-variability

graphical optimization, 47

reward-to-variability ratio, 46, 47, 58, 58,
58–59

graphical optimization, 58–59

reward-to-variance ratio, 61, 61, 61

graphical optimization, 61

risk minimization, see risk sensitivity

risk sensitivity, 44–47, 52, 65–66

robotics, see examples, applications
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S

satisficing, 49

scale, see stochasticity, distributions,
location-scale family

SD, see finance, stochastic dominance

searching, see solitary agent model,
searching

semivariance, see stochasticity, statistics,
lower-partial variance

Sharpe ratio, see reward-to-variability ra-
tio

skewness, see stochasticity, statistics,
skewness

skewness preference, 35

solitary agent model, 3–5, 6–12, 12–32

agent, 4

assumptions, 6–8

choice, 4

classical analysis, 13–22

limits, 19

OFT cycle, 16, 16

optimization, 39–49, 74–92

Poisson encounters, 13–14

renewal process, 16–17

reward processes, 14–15, 18

statistics, 14–16, 18–22

variance, 20–22

comparison of analyses, 29–30

costs, 4

currency, 4

decision variables, 11

net point gain, 4

parameters, 9–11, 106–108

point gain, 4

processing, 4

processing-only analysis, 5, 22–28

limits, 26–27

optimization, 49–69, 74–92

Poisson encounters, 22–23

processing cycle, 25, 25

renewal process, 25

reward processes, 23–26

statistics, 24, 26–28

variance, 27–28

random processes, 8–9, 12

searching, 4

tasks, 4

weaknesses, 30–32

speed-accuracy tradeoff, 38

split before merge approach, 22

split Poisson process, see stochasticity,
Poisson process, split

stochastic dominance, see finance,
stochastic dominance

stochastic model, see solitary agent model

stochasticity, 3, 112–113

central limit theorem (CLT), 46, 106

distributions, 72

double exponential, 45

Erlang-2, 99, 99

exponential, 45

location, see stochasticity, distribu-
tions, location-scale

location-scale family, 45, 45–46

log-normal, 45

normal, 45, 46, 46

scale, see stochasticity, distribu-
tions, location-scale

symmetry, 34, 46

uniform, 45

Markov renewal process, 16–17, 98–99

limits, 98–99

Markov renewal-reward process, 18,
26

Poisson process, 98, 99

merged, 14, 15, 22, 23

split, 22, 23

probability measure, 6, 112

probability space, 6, 98, 112

random process, 113

almost sure limit (aslim or
a.s.−−→),

113
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random variable, 6, 34, 72
cumulative distribution function

(F ), 112
i.i.d., 8, 106
independence, 7, 12
probability density function (f),

112
pseudo-deterministic, 7–8, 12, 20,

27
uncorrelated, 7

statistics
central moments, 20, 34
conditional expectation, 113
expectation (E), 6, 112
expectation of function, 112
expected value, see stochasticity,

statistics, expectation
finite expectation, 8, 8, 12
lower-partial moment (LPM), 71,

106
lower-partial variance (LPV), 70–

71, 106
mean, see stochasticity, statistics,

expectation
moments, 6
normal, 46
semivariance, see stochasticity,
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